Gas exchange in animals External respiration: not to be confused with cellular respiration‚ although purpose is to provide oxygen and eliminate carbon dioxide Single-celled organisms achieve this by simple diffusion Larger organisms need specialized breathing organs Getting the air into the body is one challenge Circulatory system needed to distribute oxygen to the tissues Specialized blood cells can transport oxygen (solubility in plasma is very low) The process of breathing Air has much
Free Carbon dioxide Oxygen Respiratory system
franciscana are known to live in high salinity lakes that are often basic (Biology 108 Lab Manual 2015). Furthermore‚ A. franciscana feed on photosynthetic phytoplankton which inhabit areas of light availability but are also more susceptible to predation in highly-lit areas (Biology 108 Lab Manual 2015). Also‚ A. franciscana can withstand a broad range of temperature except extreme values may affect survival (Biology 108 Lab Manual 2015). In this experiment‚ the habitat
Premium PH Acid
May 26th‚ 2014 Lab section: C014 Monday 11am-1:50pm TA: Eduardo Castillo Work station 8 1 Abstract This lab consisted of three different measurements; measuring length‚ flow rate‚ and resistance. The reason for this lab was to use statistical concepts learned in lecture to analyze data and to become more familiar with the lab equipment. Repeatability measurements were taken on a bolt to get the total length‚ and also measuring the flow rate of a faucet by measuring the amount of time
Premium Measurement Arithmetic mean Statistics
Introduction In unit 7.3 the experiment tested the ability of lactase to specifically bind and interact with lactose compared to maltose. In unit 7.4 the experiment tested the role‚ if any‚ that metal ions have on the activity of lactase. My hypothesis for unit 7.3 was knowing that lactase is specific for lactose‚ lactose will separate into galactose and glucose‚ as maltose will not change (153-155). Lactase should like lactose. For unit 7.4 my hypothesis was that EDTA will remove the ions‚ and
Premium Null hypothesis Enzyme Disaccharide
Limiting Reagent and Percent Yield Aim To determine the limiting reagent between the reaction of lead (II) nitrate and potassium iodide. To determine the percent yield of lead (II) iodide. Date Started: 13/4/12. Finished: 19/4/12. Data collection and processing Measurements: * Amount of distilled water: 75.0ml ± 0.5ml. * Mass of watch glass: 31.65g ± 0.01g. * Mass of watch glass + potassium iodide: 32.45g ± 0.01g. * Mass of potassium iodide: 0.8g ± 0.02g. * Mass of watch
Premium Stoichiometry Yield Molecule
Tittle : Investigation of the Enzymatic Effects of Materials on Hydrogen Peroxide Solution Objective: To investigates the enzymatic effect of various materials in the hydrogen peroxide solution. Table 1 Test Tube Contents with 5 cm3 hydrogen peroxide Observations before and after using wood splint Observation of after Observation of after adding hydrogen using wooden glowing peroxide splinter 1 Fresh liver Moderate
Premium Oxygen Hydrogen peroxide Catalase
Inorganic Chemistry 1. A subatomic particle with a single positive electrical charge is protons. 2. A subatomic particle with a single negative electrical charge is electrons. 3. A subatomic particle which is electrically neutral is neutrons. 4. The nucleus of an atom is made up of _protons_ and _neutrons. 5. The number of electrons forming a charge cloud around the nucleus is (pick one of the following) greater than; equal to; smaller than the number of protons in the nucleus of the atom.
Premium Atom Electron
EXPERIMENT I Photoreduction of Benzophenone Introduction The study of chemical reactions‚ isomerizations and physical behavior that may occur under the influence of visible and/or ultraviolet light is called Photochemistry. The fundamental principles for understanding photochemical transformations are that light must be absorbed by a compound in order for a photochemical reaction to take place‚ and that for each photon of light absorbed by a chemical system only one molecule is activated for
Premium Oxygen Sunlight Electromagnetic radiation
Chemotherapeutic Agents of Control: Introduction: Chemotherapeutic agents are chemical substances used to treat various forms of infectious diseases. The chemotherapeutic agent works by stopping the bacteria from reproducing. There are two different kinds of chemotherapeutic agents. The first kind is an antibiotic‚ which slow down the growth of microorganisms. The second kind of chemotherapeutic agent is synthetic drugs. Synthetic drugs are artificially made in a laboratory. Chemotherapy
Premium Bacteria
Data collection Quantitative Data Raw Data Table 1: Table showing the mass of the amount of unknown acid X measured in grams (±0.001g) Table 2: Table of reading of the burette initially filled with 25mL of 0.201moldm-3 sodium hydroxide (NaOH) to titrate 25mL (±0.03mL) of unknown acid X in mL (±0.05mL) after each titre. Reading on the burette initially filled with 25mL of 0.201moldm-3 NaOH (±0.05mL) First titre 21.3 Second titre 18.2 Third titre 15.2 Fourth titre 12.0 Qualitative
Premium Acid Sodium hydroxide Solubility