In Class Assignment 6: Cellular Respiration Figure 1: Glycolysis 1) Glucose is considered what type of energy? 2) What energy molecule must be used to start glycolysis? 3) Based on your answer to question 1 why do you think ATP must be used to start glycolysis? 4) How many net ATP are produced by glycolysis? 2 5) What is the end product of glycolysis? Figure 2: The Krebs Cycle 6) How many pyruvates did one molecule of glucose produce? 7) Based on your
Free Cellular respiration Adenosine triphosphate
Benjamin Tiger1/16/12 Cellular Respiration Questions 1. Aerobic pathways require oxygen‚ while anaerobic pathways don’t. Anaerobic pathways only require the process of glycolysis to produce energy. Anaerobic pathways are found outside the mitochondria within the cytoplasm of the cell‚ with a low efficiency of 4%. These pathways require glucose‚ ATP‚ adolase‚ fructokinase‚ dehydrogenase‚ and NAD+. Out of one glucose molecule‚ major products include two net ATP‚ two NADH‚ and two pyruvate
Free Cellular respiration Adenosine triphosphate
Cellular respiration is defined as a complex process in which food molecules are broken down to harvest chemical energy which is then stored in the chemical bonds of adenosine triphosphate (ATP). It is usually decided by the metabolic exercise and the equivalent amount of ATP discharge. As long as the extracellular O2 pressure surpass a demanding value ranging from 3-6 torr‚ studies have proof that cellular oxygen uptake stay permanently autonomous of oxygen tension. When the carbon-hydrogen bonds
Premium Cellular respiration Adenosine triphosphate Oxygen
increased consumption of oxygen and nutrients by muscle cells requires more blood supply. The functions of blood include delivering oxygen‚ removing CO2‚ removing heat and delivering nutrients and water. Therefore‚ blood flow is important in cellular respiration‚ which is the process where ATP is produced through the conversion of metabolites‚ also involving the consumption of oxygen and release of CO2 as a waste product. ATP is vital to skeletal muscle contraction‚ since the power stroke is facilitated
Premium Heart Blood Muscle
Abstract The experiment aims to observe if simpler substrates makes the rate of cellular respiration faster. Using yeast‚ smith fermentation tubes and different substrates namely‚ starch‚ lactose‚ sucrose‚ glucose and fructose‚ which are from different kinds of carbohydrates‚ ranging from the simplest sugars glucose and fructose to the polysaccharide starch and water as the control‚ the hypothesis was tested. With the span of thirty minutes with five-minute intervals‚ the height of carbon dioxide
Premium Cellular respiration Carbon dioxide Oxygen
Balloon Respiration Lab Introduction/ Background Cellular respiration is a process that releases chemical energy from glucose and other carbon-based molecules to produce ATP when oxygen is present. The formula for cellular respiration is C6H12O6+ 6O2= 6CO2= 6H2O. The process of respiration contains three main parts‚ glycolysis‚ Krebs cycle‚ and the Electron Transport Chain. The process of glycolysis takes place in the cytoplasm and is considered an anaerobic process which splits glucose into two
Premium Metabolism Cellular respiration Adenosine triphosphate
1.Explain the process of Cellular Respiration in order. Where does each step occur in a cell‚ which steps require oxygen‚ and how many ATP are produced in each step? Cellular respiration is the breakdown of glucose in the presence of oxygen to yield ATP. Glycolysis is the first stage in the breakdown of glucose and It occurs in the cell’s cytoplasm. It does not require oxygen (anaerobic). This step also occurs in two steps‚ the energy investment step‚ and the energy yielding step. This process yields
Premium Adenosine triphosphate Cellular respiration Citric acid cycle
Part 1. Cellular Respiration Prarthana Minasandram Partner: Ben Liu Introduction Purpose: To examine the rate of alcoholic fermentation using various carbohydrates. Hypothesis: If the yeast is placed in 5% glucose or sucrose solutions‚ then carbon dioxide production will increase over time. If boiled yeast is placed in a 5% sucrose solution‚ then carbon dioxide production will remain constant. Variables Independent variable: Carbohydrate solutions (5% solutions of glucose and sucrose) and
Premium Carbon dioxide Yeast Metabolism
Transport Chain Mitochondrial stuff occurs only if O2 is present Anaerobic Also called Lactic acid fermentation Products are lactic acid + 0 ATP Redox NAD+ NADH Oxidized molecule education products C6H12O6+6O26CO2+6H20+ATP Cellular Respiration Glycolysis in cytoplasm STEPS (Glucose being substrate‚ substrate level phosphorylation occurs) Phosphorylation addition of phosphate 6 carbon glucose one phosphate added rearranged to fructose added second phosphate fructose
Premium Adenosine triphosphate Cellular respiration Metabolism
Cellular respiration‚ which synthesis ATP‚ begins with glycolysis‚ wherein a six-carbon glucose is broken down into two three-carbon molecules called pyruvate. This process requires the input of two ATPs to produce two pyruvates‚ two NADHs‚ and 4 ATPs. The NADHs are synthesised when NAD+‚ delivered by B vitamins‚ become bound to hydrogen and energised electrons1. Following glycolysis is the Krebs cycle and electron transport chain respectively. The Krebs cycle uses the two pyruvates produced in glycolysis
Premium Adenosine triphosphate Cellular respiration Metabolism