Recrystallization of Methyl 3-nitrobenzoate Santiago Horta‚ Daniella I School of Chemistry and Biochemistry‚ Georgia Institute of Technology Atlanta‚ GA 30332 Submitted: 18 February 2015 In this experiment‚ the product of a nitration will be purified by recrystallization using a selected solvent. Methyl benzoate is treated with nitric acid and sulfuric acid to obtain methyl 3-benzoate‚ which will be mixed with a solvent that will dissolve the product at its boiling temperature but not at
Premium Chemistry Solid Water
Loreta Grazhees TA: Titas Friday 11:50 - 3:55 February 9‚ 2018 Nitration Of Toluene When reacting Toluene with (NO2+) the end goal is to generate an ortho-‚ para-‚ and/or meta-nitrotoluene. This lab will help guide you in the direction to predict the regioselectivity and activation vs. deactivating powers of the nitro-group. Gas Chromatography will be used to analyze compounds that can be vaporized without being decomposed. GC is also used to check the purity of a substance‚ and separating the
Premium Ammonia Chemistry Oxygen
Nitration of Naphthalene Wed 2/25/2015 Lab report # 1 Abstract: The purpose of this experiment was to nitrate naphthalene with nitronium ion‚ which is formed at low concentration from a reaction of nitric acid and sulfuric acid. The percent yield from the experiment was 54.4% of the product‚ and the melting point of the possible results were 59 °C for 1-nitronaphthalene‚ and 78°C for 2-nitronaphthalene. Introduction: Polynuclear aromatic hydrocarbons such as naphthalene can be nitrated
Premium Nitric acid Chemistry Stoichiometry
Nitration of Methyl Benzoate Date of Completion: February 29‚ 2012 Date Report Submitted: March 14‚ 2012 Objective of Experiment: The purpose of this experiment is was to synthesize methyl 3-nitro benzoate from methyl benzoate through an electrophilic aromatic substitution reaction. Chemical Equation: Materials: Name of Compound Molecular weight MP/BP Grams Used Moles Used Methyl benzoate 136.16 g/mol -12.5 OC /199.6 OC 0.28g 2.056*10-3 Sulfuric acid 63.01 g/mol 10 OC /337OC 0
Premium Chemistry Benzene Sulfuric acid
H2SO4 were combined to form a nitrating solution‚ which was mixed with a mixture of methyl benzoate and H2SO4. Percent yield for the final product was calculated followed by recrystallization and melting point was measured. Introduction: Nitration of Methyl Benzoate is one of the examples of Electrophilic aromatic substitutions. The use of a mixture of Sulfuric Acid and Nitric Acid is the classic way to make NO2+. The two main reaction types used for this are both substitutions: Electrophilic
Premium Sulfuric acid Benzene Chemistry
Nitration of Methyl Benzoate to form Methyl-m-nitrobenzoate via Aromatic Substitution Linh Ngoc Thuy Nguyen Seattle Central Community College Professor: Dr. Esmaeel Naeemi Date: February 21st‚ 2012 Abstract In this experiment‚ methyl-m-nitrobenzoate‚ followed the electrophilic addition of aromatic ring‚ would be formed from the starting material methyl benzoate and nitric acid‚ under the catalysis of concentrated sulfuric acid. The reaction between nitric acid and sulfuric acid resulted
Premium Sulfuric acid Benzene Chemistry
Chapter 28: Nitration of Methyl Benzoate I. General Information: A.) Microscale Nitration of Methyl Benzoate B.) C.) May 17‚ 2008 D.) Reaction(s)‚ including molar masses and all relevant physical data E.) Mechanism for the nitration of chlorobenzene: II. Purpose: In this experiment we are to take a cold solution of an aromatic ester that is first dissolved in sulfuric acid and is then reacted with nitric acid. This is a highly exothermic reaction and is kept under control by means
Premium Sulfuric acid Temperature Nitric acid
NITRATION OF METHYL BENZOATE Purpose: The main objective of this experiment was to synthesize methyl nitrobenzoate from methyl benzoate‚ using the mixture of nitric and sulfuric acid by performing the process of electrophillic aromatic substitution. During this reaction‚ the combination of HNO3 and H2SO4 made a nitrating solution. The crystallization was done to accomplish pure product. The melting point and Thin Layer Chromatography (TLC) were performed to test the purity of the product. Using
Premium
Rossi/Kuwata Chemistry 222 Spring 2011 Experiment 2: Spectrophotometric Determination of Iron in Vitamin Tablets (Adapted from Daniel C. Harris’ Quantitative Chemical Analysis and R. C. Atkins‚ Journal of Chemical Education 1975‚ 52‚ 550.) Experimental work to be done on February 24 + one hour scheduled on your own Notebook due on March 4 (by 4:00 pm ⇒ 20% late penalty each 24 hour period thereafter) INTRODUCTION In this experiment‚ you will dissolve the iron in a vitamin supplement tablet‚
Premium Absorbance Chemistry Laboratory glassware
major types. Hydrocarbons react differently in reagents. The basis of determining an unknown hydrocarbon is due to the differences in reactions of hydrocarbons. An unknown compound is determined using tests. The unknown gives a positive result in nitration test and gives no brown precipitate in oxidation test. The unknown is an aromatic and non-alkylated compound. _______________________________________________ Introduction: Hydrocarbons are organic compounds that composed of only hydrogen and
Premium Benzene Carbon Hydrocarbon