The Effect of pH on the Rate of Osmosis Using a Glucose Solution Melissa Werderitch Biology 157 11/6/06 Introduction In a journal article written by Florian Lang‚ osmosis is essentially explained as the flow of water from one area to another that are separated by a selectively permeable membrane to equalize concentrations of particles in the two locations (Lang‚ 1997). Osmosis is able to maintain osmotic pressure and regulate a cell’s volume. In a hypotonic () or hypertonic () environment
Premium Glucose Enzyme Metabolism
molecules of the food coloring equally distributed in the area of the water. Osmosis is a special type of diffusion where only the water molecules move. This happens through a selectively permeable membrane. It allows water and oxygen to move freely across the membrane. Osmosis only has an effect when the cell is in a hypotonic or hypertonic solution. A hypotonic solution is when the salt concentration
Premium Osmosis Chemistry Water
original state and the percent of the hydrate recovered was calculated by using the mass of the rehydrated sample by the mass of the original hydrate and then multiplied by 100%. Data Presentation & Analysis Table 1: The data was collected from the lab experiment. Sample calculations are shown. Mass of beaker with sample 30.765g Mass of empty beaker 30.263g Mass of sample .502g Mass of beaker with sample after 1st heat 30.661g Mass of beaker with sample after 2nd heat 30.657g Heating mass
Premium Mathematics Mole Heat
The lesson is divided into 3 labs that can be completed in any order. After labs have been completed‚ facilitate a class discussion where students summarize and compare findings and relate how their findings support (or refute) Newton’s Laws of Motion LAB 1: How fast can it go? Put one car at the top of the ramp and let it roll down. Use a stopwatch to record the time the car rolled. Use this information to calculate the acceleration of the car. Measure the distance the car rolled using the
Premium Automobile Education Learning
Bio Lab Report Erica Patterson September 10‚2013 Intro to cellular and molecular Biology Lab Abstract: In the Biology Laboratory Manual by Darrell S. Vodopich and Randy Moore are results to a similar experiment. The studied the hypothesis of carbon dioxide production by yeast fed sugar is not significantly different than the carbon dioxide production by the yeast fed in protein. Their hypothesis is the one that has helped formulate ours. We also will be answering the same to questions “What
Premium Carbon dioxide Metabolism
When Chemicals React! Mr. Bell’s honors level chemistry class conducted an experiment during their lab demonstrations‚ this consisted of elements such as phosphorus and calcium chloride in their experiment. This along with another hydrogen based sunstance produced‚ what looked like a pinkish-looking substance inside of their flasks that were at their lab stations. Sophmore Kelly Caudel said‚ “ I actualley enjoy doing the experiments in this class‚ because it gives us a chance to get away from
Free Chemistry
BAEK (10Bio02) Do NOT delete anything I have written in red. Make any corrections in blue so I know what to re-read Osmosis Diffusion is the net movement of particles from an area of high concentration to an area of low concentration. Then what is osmosis? Basically‚ osmosis is the same action with diffusion but in water. To describe more precisely‚ osmosis is the net movement in water across partially permeable membrane‚ which mean the membrane allows the water to get through the
Premium Cell Cell wall Osmosis
Name: Nikia Martinez Class: Biology 240L L3-1201 Assignment: Electrocardiography Lab Report Due: April 3rd 2012 Professor: Dr. B. Schoffstall Introduction In a normal human being the heart correctly functions by the blood first entering through the right atrium from the superior and inferior vena cava. This blood flow continues through the right atrioventricular valve into the right ventricle. The right ventricle contracts forcing the pulmonary valve to open leading blood flow through the pulmonary
Premium Heart
the percent yield by dividing the expected yield‚ the amount of product that should be produced based on your stoichiometric calculations‚ by the actual yield‚ the amount of product that is experimentally obtained from a chemical reaction. In this lab‚ I have determined the reaction for mixing two reactants together; I measured out 0.005 moles of each reactant‚ lead (II) nitrate and potassium chromate. I dissolved‚ mixed‚ and made them react to make products; I compared the mass of the two reactants
Premium Stoichiometry Chemical reaction
Engine Lab Report Diesel Engine Load/N |Fuel Time/s |dH/mmH2O |Speed/r.p.m |Temp/℃ |Air consumption/kg/H |Fuel consumption/kg/H |Air-fuel ratio |Power/kw |Efficiency/ % | |40 |121.6 |17.5 |3018 |26.6 |130.16 |2.47 |52.7 |4.5 |0.019 | |80 |94.72 |17.5 |3009 |26.7 |130.14 |3.17 |41.05 |8.97 |0.059 | |125 |72.76 |17 |3009 |26.8 |128.25 |4.12 |31.13 |14.02 |0.111 | |171 |56.95 |17 |3000 |26.9 |128.23 |5.72 |24.33 |19.12 |0.161 | |212 |46.06 |16.5 |3006 |27.1 |126.28 |6.51 |19.40 |23.76 |0.202 | |232
Premium Internal combustion engine Fuel injection Diesel engine