Biology Computational Systems Biology Lecture 3: Enzyme kinetics Tue 17 Jan 2006 with the collaboration of Luna De Ferrari 1 Images from: D. L. Nelson‚ Lehninger Principles of Biochemistry‚ IV Edition‚ W. H. Freeman ed. A. Cornish-Bowden Fundamentals of Enzyme Kinetics‚ Portland Press‚ 2004 A. Cornish-Bowden Enzyme Kinetics‚ IRL Press‚ 1988 Computational Systems Biology Summary: • • • • • • 2 Simple enzyme kinetics Steady-state rate equations Reactions of two substrates
Premium Enzyme Enzyme inhibitor Reaction rate
Discussion Our experiment is divided into 9 parts: A. Effect of Nature of Reactants to the reaction rate. B. Effect of Temperature to the reaction C. Effect of Concentration to the Reaction Rate D. Effect of Catalyst to the Reaction Rate E. Chromate-Dichromate Equilibrium F. Thiocyanatoiron (III) Complex Ion Equilibrium G. Weak Acid Equilibrium (Ionization of Acetic Acid) H. Weak Base Equilibrium Ionization of Ammonia I. Saturated Salt (Sodium Chloride) Equilibrium On part (A) we are
Premium Chemical reaction Energy
F7 Essay Writing (Kinetics) Q. Write an essay on factors which affect the rate of reactions and discuss the uses of kinetic studies. Outlines: (I) Factors affecting the Rate of Reaction (a) temperature ---- collision of molecules with different velocities and kinetic energies ---- Collision Theory and Maxwell-Boltzmann distribution ---- Arrhenius equation and Activation energy (b) concentration ---- frequency of collisions and effective collisions
Premium Chemical kinetics Reaction rate Chemical reaction
The two different types of energy are kinetic and potential energy. Kinetic energy is the energy a moving object has because of its motion. The kinetic energy of a moving object depends on the object’s mass and its speed. The kinetic energy of a moving object can be calculated from this equation: Kinetic energy (in joules) = ½ mass (in kg) x [speed (in m/s)]² KE= ½ mv² In this equation ^‚ the symbol v represents speed. Example Find the kinetic energy of the ball having mass 0‚5 kg and
Free Energy Potential energy Kinetic energy
Kinetic Theory - Worksheet 1. State three (3) assumptions of the kinetic theory as it relates to gases. [3] ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 2. The kinetic theory assumes that all gases are ideal‚ however‚ this does not exist in reality. a. State the conditions under which gases deviate from ideal behaviour and explain
Premium Ideal gas law Gas Pressure
<i>1. State the five assumptions of the Kinetic-Molecular Theory of gases.</i><br><br>a) Gases consist of large numbers of tiny particles. These particles‚ usually molecules or atoms‚ typically occupy a volume about 1000 times larger than occupied by the same number of particles in the liquid or solid state. Thus molecules of gases are much further apart than those of liquids or solids.<br><br>Most of the volume occupied by a gas is empty space. This accounts for the lower density of gases compared
Premium Gas Pressure Ideal gas law
Learning Goals: • Predict the kinetic and potential energy of objects. • Examine how kinetic and potential energy interact with each other. In the space provided‚ define the following words: Kinetic energy-is the energy of motion. An object that has motion - whether it is vertical or horizontal motion Potential energy-is the energy of an object or a system due to the position of the body or the arrangement of the particles of the system Open Internet Explorer. From the FMS
Premium Kinetic energy Energy Potential energy
Lecture No. 1 Chemical Kinetics 1.1 The Rate of a Reaction Chemical Kinetics is the area of Chemistry that is concerned with the speed‚ rate or mechanism at which a chemical reaction occurs. Reaction Rate is the change in the concentration of a reactant or product with time (i.e. M/s). It measures how fast a reactant is consumed and how fast a product is formed. 1.2 WRITING RATE EXPRESSIONS Consider the following hypothetical reaction. A + 2B ( 3C + D Rate = - rate
Premium Chemical kinetics Rate equation
Kinetic Molecular Theory Basic Concepts The gas laws developed by Boyle‚ Charles‚ and Gay-Lussac are based upon empirical observations and describe the behavior of a gas in macroscopic terms‚ that is‚ in terms of properties that a person can directly observe and experience. An alternative approach to understanding the behavior of a gas is to begin with the atomic theory‚ which states that all substances are composed of a large number of very small particles (molecules or atoms). In principle‚ the
Premium Ideal gas law Thermodynamics Gas
Part B Now‚ suppose that Zak’s younger cousin‚ Greta‚ sees him sliding and takes off her shoes so that she can slide as well (assume her socks have the same coefficient of kinetic friction as Zak’s). Instead of getting a running start‚ she asks Zak to give her a push. So‚ Zak pushes her with a force of 125 \rm N over a distance of 1.00 \rm m. If her mass is 20.0 \rm kg‚ what distance d_2 does she slide after Zak’s push ends? Remember that the frictional force acts on Greta during Zak’s push and
Free Force Friction Energy