Name: Planetary Orbit Simulator – Student Guide Background Material Answer the following questions after reviewing the “Kepler’s Laws and Planetary Motion” and “Newton and Planetary Motion” background pages. Question 1: Draw a line connecting each law on the left with a description of it on the right. only a force acting on an object can change its motion Kepler’s 1st Law Kepler’s 2nd Law planets move faster when close to the sun Kepler’s 3rd Law Newton’s 1st Law planets orbit the sun in elliptical
Premium Planet
Collision Impulse and Momentum PH215L Physics 1 Lab Lab#8 Lab Was Held: 3/20/14 Report Submit: 3/27/14 Professor List Daniel Webster College Table Of Contents Introduction Theoretical background Equipment list Procedure Calculations and Results Discussion Conclusion Introduction In this lab we tested the duration of impact‚ the force of impact and the change of momentum of the particles involved in the collision all
Premium Classical mechanics Force Object-oriented programming
km 5 93 3 106 mi 3.8 3 105 km 5 2.4 3 105 mi 3500 km < 2160 mi 1.4 × 106 km < 864‚000 mi LibraryPirate PHYSICS LABORATORY EXPERIMENTS S e v e n t h E d i t i o n Jerry D. Wilson Lander University Cecilia A. HernÁndez-Hall American River College Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States LibraryPirate Physics
Premium Measurement
The Design Principles of PlanetLab Larry Peterson Princeton University Timothy Roscoe Intel Research Berkeley PDN–04–021 June 2004 (updated January 2006) Appears in Operating Systems Review‚ 40(1):11-16‚ January 2006 The Design Principles of PlanetLab Larry Peterson Princeton University Timothy Roscoe Intel Research – Berkeley ABSTRACT PlanetLab is a geographically distributed platform for deploying‚ evaluating‚ and accessing planetary-scale network services. PlanetLab is a shared
Premium Operating system
References: http://www.scribd.com/doc/94383213/Physics-Lab-Report Physics reference book ;pearson;James S.Walker http://www.digipac.ca/chemical/sigfigs/experimental_errors.htm
Premium Newton's laws of motion Mass Classical mechanics
Experiment 1: Simple Harmonic Motion Dominic Stone Lab Partner: Andrew Lugliani January 9‚ 2012 Physics 132 Lab Section 13 Theory For this experiment we investigated and learned about simple harmonic motion. To do this we hung and measured different masses on a spring-mass system to calculate the force constant k. Simple harmonic motion is a special type of periodic motion. It is best described as an oscillation motion that causes an object to move back-and-forth in response to
Premium Mass Force Classical mechanics
Interpretations: 1. The time required for the objects with different masses to fall equal distances was equal. 2. The average speed of the two different masses was quite similar‚ within one tenth of a second of each other. 3. Yes‚ because physics theory says that objects free falling‚ where the only force acting on them is gravity‚ accelerate at the same rate no matter what their mass is. 4. The change in spacing of the dots tells us that the speed of the object is increased as it falls
Premium Mass Acceleration
Experiment 9: THE TANGENT GALVANOMETER; PURPOSE: In this experiment we will measure the magnitude of the horizontal component of the Earth’s Magnetic field by the use of an instrument called a tangent galvanometer. INTRODUCTION: A tangent galvanometer consists of a number of turns of copper wire wound on a hoop. At the center of the hoop a compass is mounted. When a direct current flows through the wires‚ a magnetic field is induced in the space surrounding the loops of
Premium Refraction Snell's law Refractive index
Measuring Time Date Due: 2013.09.23____ Name: Lily Li____ Class: A__ Teacher: ___Mrs Slater___ Purpose: To determine the period and the frequency of a ticker timer. Materials/Apparatus: One ticker timer One carbon paper disc One 1.5+ meter tape One test tape One stop-watch Theory: The recording timer is a device that helps you study motion‚ it is a simple electric device plugged
Premium Time Frequency Error
Lab #1: Projectile Motion Purpose: To determine experimentally the initial and final velocities of an air powered projectile. Hypothesis: If the angle of the rocket is launched at 45 degrees than the distance and velocity will maximize. Materials: Rocket launching platform Rocket launcher Rocket body Air pump Safety goggles Rubber washer Nose cone 40‚ 45‚ 50‚ 55 and 60 angle wooden blocks Measuring wheel Procedure: 1. The rocket was assembled by the rocket launcher
Premium Rocket Hypothesis