Pendulum Raiyan Hassan SPH3U September 20‚ 2011 Introduction A pendulum is a device which consists of a mass attached to a string from a frictionless pivot which allows it to swing back and forth. In this experiment‚ the time it takes for a pendulum to go through a period is going to be measured. The time it takes for a pendulum to go through one period can depend on factors such as the length of the string‚ mass‚ or the degree in which the pendulum is released from (amplitude). In this
Premium Mass Measurement Time
Samantha Mackey 13. 2nd hour PHYSICS LAB REPORT: SPEED OF SOUND Purpose: In this lab‚ we will be doing 3 major things: 1) Collecting and organizing data to obtain resonant points in a closed pipe‚ 2) measure the length of a closed-pipe resonator‚ and 3) analyze the data to determine the speed of sound. Procedure: 1. Fill the graduated cylinder nearly to the top with water‚ with a tall glass tube open at both ends (the water level with act as the closed end). 2. Determine
Premium Sound Hertz Frequency
SPECIFIC GRAVITY BY DENSITY BOTTLE AIM OF THE EXPERIMENT:- To determine the Specific Gravity of soil a particle passing through 4.75 mm IS sieve using Density bottle. APPARATUS REQUIRED:- i. Density bottle of 100 mm capacity. ii. Desiccators. iii. Balance with sensitivity of 0.01 gm. THEORY:- Specific Gravity is the ratio of the mass in air of given volume of dry soil solids to the mass of equal volume of distilled water at 4 o C. Or ratio of unit weight of soil
Premium
PDP Physics Lab Report – 01 NAME: Wang Xueqian DATE: 2014/06/21 Introduction In this experiment‚ we will investigate the relationship between the linear speed of an object and magnitude of centripetal force acting on it. We will use a stopper moving in a circle to create an upward force on the hanging mass; at equilibrium‚ the upward force on the mass will exactly equal the centripetal force. Apparatus Two-hole Stopper Plastic Tube Plastic Clip Electronic balance Hooked Masses Stop Watch String
Premium Measurement Force Mass
Ball Drop Lab 2 Name Date Objective to determine the acceleration of gravity for falling objects to prove that this acceleration is the same for all objects regardless of their mass Apparatus objects to drop‚ stopwatch‚ meter stick‚ Pasco motion sensor Procedure Each group will get 1 object record the balls mass Using a meter stick measure a height (distance) that you are going to drop your ball. Making sure that your initial velocity of the ball is 0 m/s‚ drop the ball and measure (using
Premium Acceleration Velocity General relativity
Experiment 1: Simple Harmonic Motion Dominic Stone Lab Partner: Andrew Lugliani January 9‚ 2012 Physics 132 Lab Section 13 Theory For this experiment we investigated and learned about simple harmonic motion. To do this we hung and measured different masses on a spring-mass system to calculate the force constant k. Simple harmonic motion is a special type of periodic motion. It is best described as an oscillation motion that causes an object to move back-and-forth in response to
Premium Mass Force Classical mechanics
plate (reference 5) 6. Laboratory balance (reference 6) 7. Two kinds of metal Because of my illness I could not attend on this lab experiment. That is the reason why I do not have the discussion and the result for this experiment. Reference: Reference 1: Ruggiero‚ August. “LAB Manual for PHYSICS 102” at Essex County College Reference 2: physics. smu. edu Reference 3:
Premium Temperature Thermodynamics
| Buoyant ForceB=Δmg=ρf VobjgThis equation was used to calculate the buoyant force of an object. | Experimental Procedure: ProcedureA: * Setup similar to the spring constant lab * Use the same or a similar spring from the spring constant lab * Find the spring constant of the smallest spring used from previous lab if not already foundB: * Use the same metal rod from the Error of Propagation experiment and attach it to the bottom of the spring * Fully submerged the metal rod in a beaker
Premium Management Marketing Mass
opens‚ click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. When the ball is stopped there isn’t any changes in the placement of the ball. This means that there is zero velocity at that time. 2) Which color vector (arrow) represents velocity and which one represents acceleration? How can you tell? The green arrow represents
Premium Velocity Classical mechanics Kinematics
Physics Lab Report: Parallel Force Aim: To test the principle of moments. Apparatus: Metre rule with holes drilled at the 25cm‚ 50cm and 75cm mark‚ 50g masses 50mm long bolt with a diameter of approximately 5mm‚ retort stand‚ boss head and clamp‚ 0-10 N spring balance‚ electronic pan balance ‚wire or string for suspending masses from the metre rule‚ two bulldog clips. Part A: Balancing a constant moment. Procedure: 1. The experiment is set up by first placing the bolt through the rule‚ then
Premium Force Mass Kilogram