top of the cup‚ the shorter the distance of the cup moved and it included all of the three Newton’s laws. My hypothesis actually turned out to be accurate. It’s really fascinating that how only 1 experiment can prove all of Newton’s three laws of motion just like that. When the marble was getting released from the ramp I observed it hitting the cup and surprisingly the cup didn’t fall off or changed directions it went in a straight path. For 1 penny we got the longest distance such as 4cm for trail
Premium Classical mechanics Force Physics
Abstract :The purpose of the experiment is to explore elastic and inelastic collisions in order to study the conservation of momentum and energy. The guided track‚ carts‚ photogates ‚ 250 g weight and picket fences were the primary components used in the procedural part of the experiment. Each experiment involved the use of the photogates and picket fences to measure the initial and final velocities of both carts when they collide. The data was collected and translated to a graphical model for further
Free Kinetic energy Classical mechanics Introductory physics
Experiment 1: Simple Harmonic Motion Dominic Stone Lab Partner: Andrew Lugliani January 9‚ 2012 Physics 132 Lab Section 13 Theory For this experiment we investigated and learned about simple harmonic motion. To do this we hung and measured different masses on a spring-mass system to calculate the force constant k. Simple harmonic motion is a special type of periodic motion. It is best described as an oscillation motion that causes an object to move back-and-forth in response to
Premium Mass Force Classical mechanics
Lab: Newton’s Law of Motion Section #: 404 Group #: 3 Experiment #: 3 Date :October 16‚ 2012 Newton’s Law of Motion Your signature indicates that you have completely read the entire report and agree with everything here in. Failure to sign will result in a zero for your personal grade unless a formal exception is filed with your TA. Please Print and Sign Full Name Principal investigator: Skeptic ________________________________________________________ Researcher:
Premium Newton's laws of motion Classical mechanics Mass
AP Physics C - Homework Two Dimensional Motion 1. A particle moves along the parabola with equation Y = ½x2 shown below. a. Suppose the particle moves so that the x-component of its velocity has the constant value vx = C; that is‚ x = Ct i. On the diagram above‚ indicate the directions of the particle’s velocity vector v and acceleration vector a at point R‚ and label each vector. ii. Determine the y-component of the particle’s velocity as a function of x. iii. Determine
Premium Classical mechanics Velocity Force
Table Of Contents PHS 100-552 Lab Part I: Scenario H Graph……………………………………………… 2 Scenario H Regions and Force Diagrams…………………………….3 Region and Force Diagram Information……………………………...4 Part II: Graph 6 ………………………………………………………….5 Step-By-Step Instruction………………………………………………..6 Regions and Force Diagrams……………………………………………7 Region Information……………………………………………………….8 Newton’s Laws…………………………………………………………… 9 Self-Assessment…………………………………………………..……..10 Scenario H You are stopped
Premium Force Acceleration Classical mechanics
The purpose of this lab was to learn about Newton’s laws of motion by completing an experiment‚ to see how the forces act on objects. The independent variable of this experiment is the type and amount of materials used for the interior of the vehicle (out of the material list) and how they were used. The dependent variable is how and if the interior of the vehicle protected the egg from getting cracked. The controlled variables of this experiment were the height that the vehicle was dropped from
Premium Force Classical mechanics Mass
Laboratory Report Cover Sheet DeVry University College of Engineering and Information Sciences Course Number: ECET110 Professor: Laboratory Number: 1 Laboratory Title: Analysis of a Series Circuit using Simulation and Actual Construction Submittal Date: 3/8/2014 Objectives: 1. To construct a series circuit and measure its equivalent resistance. 2. To predict and verify electrical characteristics of a series circuit using Ohm’s Law and Kirchhoff’s Voltage Law. 3. Determine
Premium Ohm's law Electric current Resistor
Appendix 2 21 Appendix 3 23 Appendix 4 25 Appendix 5 26 Appendix 6 28 Appendix 7 30 Appendix 8 31 Appendix 9 33 Appendix 10 35 Background Information Sport relies on three major physics concepts: force‚ acceleration and velocity; many of which involve elastic propulsion and/or projectile motion. Various types of sporting equipment are constructed with springs and elastics‚ in order to absorb a force or apply a force to another object. In the context of this investigation‚ the spring
Premium Classical mechanics Force Energy
The Physics 500 Introduction: The purpose of this lab is to show how to calculate the average speed and acceleration in six different races. In order to find average speed you will need to use the formula s=d/t (s= speed‚ d=distance‚ t=time). On the other hand‚ for accelaration you will use the formula a= vf-vi/t (a=acceleration‚ vf=final velocity‚ vi= initial velocity‚ t=time). Average speed is how fast something is moving; the path distanced moved per time. Acceleration is the
Premium Classical mechanics Velocity Force