LAB # 5 Relationship Between Drop Height and Diameter of Plasticine Sphere PROBLEM: A student suggest that there is a proportional relationship between height at which a plasticine sphere is dropped and the diameter of the flattened part after dropping. Design an experiment to determine if this suggestion is true or not. AIM: To investigate the relationship between the drop height and the flattened part of a plasticine sphere after being dropped. HYPOTHESIS: As the height of the sphere plasticine
Premium Measurement Circle
Physics Lab Report: Magnetism Aim: To compare the ratio of the magnetic length‚ the geometric length and magnetic field strength of different shaped magnets. Materials: * A Bar Magnet * A Horse Shoe Shaped Magnet * A Cylindrical Magnet * A Compass * Pencil * Ruler * A Wooden Board * 4 Needles * A bunch of Needles/pins * A3 Size paper Procedure: 1. We took a wooden board and 4 needles‚ which we hammered to the 4 corners of the board. 2. We
Free Magnetic field Magnetism Magnet
Introduction Wrong or inaccurate measurements can lead to wrong decisions‚ which can have serious consequences‚ costing money and even lives. The human and financial consequences of wrong decisions based on poor measurement being taken in matters as important as environmental change and pollution are almost incalculable. It is important therefore to have reliable and accurate measurements which are agreed and accepted by the relevant authorities worldwide. Metrologists are therefore continuously
Premium Units of measurement Measurement Metric system
Experiment 1: Error‚ Uncertainties and Measurements Laboratory Report Jan Luke Mendoza‚ Alexis Vienne Munar‚ Paula Murakami‚ Giorla Joanne Negre Department of Math and Physics College of Science‚ University of Santo Tomas Espana‚ Manila Abstract Throughout the experiment the main goal is to find out about the realities in taking measurements‚ that is‚ that there will always be an uncertainty for each acquired value. And to find out and recognize these uncertainties was handled in the
Premium Measurement
AP Physics Slinky Velocity Lab Group: Asaf Yankilevich‚ Lily Greenwald‚ Yaeli Eijkenaar‚ Michal Antonov 2/23/15 Materials ● Slinky ● Spring weight ● Force measurer ● Measuring Tape ● Timer Procedure 1. The first slinky’s mass was weighed‚ using a scale‚ and its tension was measured using a force measurer 2. The slinky was stretched to 4m. 3. The linear mass density was solved for‚ by dividing the mass by the length. 4. The theoretical velocity was solved for‚ using the equation
Premium Force Kinetic energy Velocity
Principle. obseRvations Data Table 1: Length measurements. Object Length (cm) Length (mm) Length (m) CD or DVD 12 cm 120mm 0.12 m Key 5 cm 50mm 0.01m Spoon 15cm 150mm 0.15m Fork 18cm 180mm 0.18m Data Table 2: Temperature measurements. Water Temperature (°C) Temperature (°F) Temperature (K) Hot from tap 42c 107.6f 315 k Boiling 99 c 210.0 f 372 k Boiling for 5 minutes 100 c 212 f
Premium Density Water Volume
BioLab3 Lab Report 1 Measurement Student Name: I. Length Measurement EXERCISE 1 – Measuring length using the meter A dime and a meter stick have been used to determine the following: How thick is one dime? 1 mm How thick would a stack of ten dimes be? 10 mm How thick would a stack of one hundred dimes be? 100 mm How thick would a stack of one thousand dimes be? 1‚000 mm Determine the height of each of the following stacks of dimes in metric units. 10
Premium Kilogram Units of measurement Metric system
Physics Waves Lab SL Introduction: This lab will investigate the properties of mechanical waves such as a longitudinal wave‚ focusing on the question: Does a change in the frequency of a wave result in a significant and convincing change in the speed of the wave? Hypothesis: Changing the frequency of the wave will not result in a change in speed because the wavelength will change proportionally as in theory. Student Designed Investigation Procedure/ Planning Procedure: 1. Three
Premium Measurement Light Electromagnetic radiation
PDP Physics Lab Report – 01 NAME: Wang Xueqian DATE: 2014/06/21 Introduction In this experiment‚ we will investigate the relationship between the linear speed of an object and magnitude of centripetal force acting on it. We will use a stopper moving in a circle to create an upward force on the hanging mass; at equilibrium‚ the upward force on the mass will exactly equal the centripetal force. Apparatus Two-hole Stopper Plastic Tube Plastic Clip Electronic balance Hooked Masses Stop Watch String
Premium Measurement Force Mass
Physics Lab Report Experiment M3 Centripetal Force School: La Salle College Class: 6G Group members (Group 7): Carson Ho‚ Tang Yui Hong‚ John Yu‚ Justin Kwong Date: 1 / 10 / 2014 Report is written by: Tang Yui Hong 6G (27) Title Centripetal Force Objective To verify the equation for centripetal force Apparatus Instrument Descriptions 1 rubber bung circular‚ cylinder screw nuts and wire hook / 1 small paper marker / 1 rule 1 metre safety goggles / adhesive
Premium Force Kinematics Experiment