Science in the Big City: Exploring Career Opportunities in the Natural and Physical Sciences New York City May 13-18‚ 2014 Students in the Natural Sciences at the University of Houston-Downtown are generally accomplished and motivated students with strong interests in science. However‚ students typically have a very limited perception of the science careers available to them outside of medicine. To educate students as to the array of potential careers available in the sciences (not medicine)
Premium New York City Natural science Nature
Cover page Course Code & Name: Engineering Science Title: Oscillations of a pendulum with a yielding support Instructor: Mr. Imran khan Cohort: Full Time Student Name & ID: Kyle Rigsby 68891 Date: 11/19/2014 Title page Oscillations of a pendulum with a yielding support Abstract Intent: The goal was to investigate the time taken for the pendulum to oscillate for a time period. Results: Table of Content Objectives i) Tie the end of a thread to a hole in the end of
Premium Clock Pendulum Orders of magnitude
DCP CE lab report for thermal physics Jeff Raw data collection: temperature (K)±1K | length (cm)±0.05cm | diameter(cm) ±0.05cm | volume(cm^3) | uncertainty for volume | 342 | 7.3 | 0.28 | 0.449271 | 0.163531 | 338 | 7.0 | 0.28 | 0.430808 | 0.156937 | 336 | 6.7 | 0.28 | 0.412345 | 0.150343 | 334 | 6.3 | 0.28 | 0.387727 | 0.141551 | 331 | 6.1 | 0.28 | 0.375418 | 0.137155 | 329 | 5.9 | 0.28 | 0.36311 | 0.132759 | 326 | 5.5 | 0.28 | 0.338492 | 0.123967 | 325 | 5.4 |
Premium Measurement
The moment of inertia is a measure of an object’s resistance to changes in its rotation. It must be very specific to the chosen axis of rotation. Also‚ it is specific to the mass and shape of the object‚ including the way that is mass is distributed in the object. Moment of inertia is usually quantified in kgm2. An object’s where the mass is concentrated very close to the center of axis of rotation will be easier to spin than an object of identical mass with the mass concentrated far from the axis
Premium Classical mechanics Kinetic energy Potential energy
April 29‚ 2014 Abstract The objective project was to use our knowledge of physic properties to create a working car that was powered by a mouse trap. I found that the lighter the car was and the more traction the car had‚ the further it travelled. Introduction The purpose of this project was to create a car that is powered by a mouse trap. We were to use our knowledge of physics laws to make the best car we can. I knew from Newton’s Law‚ F=ma‚ that if my car had a lower
Free Force Classical mechanics Potential energy
Data: Table 1 - Physics 400 Trials Distance (cm) Time (s) Average Speed (cm/s) 1 100.0 cm (first section) 1.01 99.0 2 100.0 cm (second section) 1.12 89.3 3 100.0 cm (third section) 1.27 78.7 4 400.0 cm (entire section) 2.97 134.68 Questions: 1. Use your data from Table 1 to calculate (to the nearest tenth of a cm/s) the average speed of the ball for each trial. Record your answers in Table 1. Be sure to include Table 1 when you submit this assessment. 2. Why are the speed values in Table
Free Orders of magnitude
Name __________________ Balloons and Buoyancy Simulation Go to HYPERLINK "http://phet.colorado.edu/simulations/sims.php?sim=Balloons_and_Buoyancy" http://phet.colorado.edu/simulations/sims.php?sim=Balloons_and_Buoyancy and click on Run Now. Determine what factors make a hot air balloon or a helium balloon float Student Instructions: 1. Why does a hot air balloon float even though it is so heavy? Hot air balloons float because the buoyancy force of the hot air is more that the
Premium Hot air balloon Airship Temperature
Height of Ball Drop v/s The Depth of the Crater | By Tejas Shah‚ IBDP Year 1 | | | | | | | * Aim- To find the relationship between the depth of crater and the height from which it is dropped. * Research Question- Does the height from where the ball is released affect the depth of the crater. * Hypothesis- If we increase the height of the drop of the ball; the depth of the crater would increase. This is because as there is loss in potential energy subsequently there
Premium Kinetic energy Energy Potential energy
1. Go to http://phet.colorado.edu 2. Click on electricity and magnetism sims. 3. Select the simulation “Magnets and Electromagnets.” It is at this link http://phet.colorado.edu/new/simulations/sims.php?sim=Magnets_and_Electromagnets 4. Move the compass slowly along a semicircular path above the bar magnet until you’ve put it on the opposite side of the bar magnet. Describe what happens to the compass needle. 5. What do you suppose the compass needles drawn all over the screen
Premium Magnetic field Electromagnetism Magnet
Introduction. Friction was studied in this lab. The experiments were conducted using a clipboard glued to various surfaces with diffirentiating frictional properties. In order for us to test the varying Static friction or Kinetic friction we used a Newton force gauge‚ some wooden blocks‚ and a metal weight. The actual experiment consisted of two parts. The first part measured the net force‚ or more specific the net force required to overcome the kinetic friction coefficient‚ to move the block across
Premium