Analysis on Inflation Regression Model Done by: Hassan Kanaan & Fahim Melki Presented to: Dr. Gretta Saab Due on: Tuesday‚ January 25‚ 2011 Outline: I. Introduction A. Definition of Variables B. Type of Variables II. Background and Literature Review A. Inflation and Unemployment B. Inflation and Oil Prices C. Inflation and GDP D. Inflation and Money Supply III. Analysis A. SPSS 17 analysis B. E-Views 5 analysis IV. Conclusion and Recommendation V. Indexes
Premium Inflation
linear regression In statistics‚ linear regression is an approach to model the relationship between a scalar dependent variable y and one or more explanatory variables denoted X. The case of one explanatory variable is called simple linear regression. For more than one explanatory variable‚ it is called multiple linear regression. (This term should be distinguished from multivariate linear regression‚ where multiple correlated dependent variables are predicted‚[citation needed] rather than a single
Premium Linear regression Regression analysis
Javier Jorge Dr. Moss Managerial Analysis April 11th‚ 2012 Project 3 We are given a linear regression that gives us an equation on the relationship of Quantity on Total Cost. As stated in the project‚ the regression data is very good with a relatively high R2‚ significant F‚ and t-values but we can’t use this model to estimate plant size. When we perform a simple eye test on the residual plot for Q a trend seems to form from positive to negative and back to positive. When we also
Premium Regression analysis Normal distribution Errors and residuals in statistics
Linear Regression Models 1 SPSS for Windows® Intermediate & Advanced Applied Statistics Zayed University Office of Research SPSS for Windows® Workshop Series Presented by Dr. Maher Khelifa Associate Professor Department of Humanities and Social Sciences College of Arts and Sciences © Dr. Maher Khelifa 2 Bi-variate Linear Regression (Simple Linear Regression) © Dr. Maher Khelifa Understanding Bivariate Linear Regression 3 Many statistical indices summarize information about
Premium Regression analysis Linear regression
Regression Modeling for Brand Xmarcom Strategy Analytical approach using Tracking Research data Approach: The analysis of brand Sofy has been done with a two stages of statistics and model building approach. MATRIX IDENTIFICATION At the very first stage the data for Sofy was plotted in scatter graphs for pattern identification. The various combinations of variables for independent and dependent variables were taken to shortlist the variables for further scientific tests. TEST AND ANALYTICS
Premium Statistical hypothesis testing Graphic design Data analysis
policy makers alike have realized that housing has significant influences on the business cycle. This paper tries to figure out the determinants of the selling price of houses in Oregon. The data set used in this paper has been retrieved from the case study titled “Housing Price” (Case #27 - Practical Data Analysis: Case Studies in Business Statistics- Marlene A. Smith & Peter G. Bryant) The most important factor in determining the selling prices ofhouses is to know the features that drive the selling
Premium Regression analysis Linear regression
Linear regression is a crucial tool in identifying and defining key elements influencing data. Essentially‚ the researcher is using past data to predict future direction. Regression allows you to dissect and further investigate how certain variables affect your potential output. Once data has been received this information can be used to help predict future results. Regression is a form of forecasting that determines the value of an element on a particular situation. Linear regression allows
Premium Linear regression Regression analysis Forecasting
1. Affirmative Action destroys the idea of meritocracy and students should be chosen based on their intelligence instead of their race or gender. “At the University of Wisconsin‚ the median composite SAT score for blacks who were admitted was 150 points lower than for whites and Asians and the Latino median SAT score was 100 points lower”. This quote shows how Affirmative Action destroys the idea of meritocracy and applicants are mainly chosen on someone’s race not intelligence. (http://brandongaille
Premium United States Supreme Court of the United States Minority group
1 CORRELATION & REGRESSION 1.0 Introduction Correlation and regression are concerned with measuring the linear relationship between two variables. 1.1 Scattergram It is not a graph at all‚ it looks at first glance like a series of dots placed haphazardly on a sheet of graph paper. The purpose of scattergram is to illustrate diagrammatically any relationship between two variables. (a) If the variables are related‚ what kind of relationship it is‚ linear or nonlinear
Premium Regression analysis Linear regression Spearman's rank correlation coefficient
Interpret. 56.6% Test the utility of this regression model (use a two tail test with α =.05). Interpret your results‚ including the p-value. P-value=0. Reject the null hpothesis. T value 7.9147 Based on your findings in 1-5‚ what is your opinion about using SIZE to predict CREDIT BALANCE? Size is a good predictor for credit balance. Compute the 95% confidence interval for beta-1 (the population slope). Interpret this interval. (300.79‚ 505.66) Using an interval‚ estimate the average credit
Premium Regression analysis Statistics