Regents Physics Constant Velocity/ Acceleration Lab 10-3-13 Problem: Graphical Analysis of Constant Velocity and Accelerated Motion. Theory: Gravitational acceleration is constant on Earth g=9.8m/s2 Therefore‚ when the golf ball is dropped‚ the acceleration will be equal to gravitational acceleration agb=9.8m/s2 Given there is no air resistance‚ this means that when the golf ball is dropped from a given distance‚ according to the formulas‚ the golf ball will accelerate
Premium Acceleration Velocity
Variables used in this lab were “x” for position of the object‚ “v” for velocity of the object‚ and “a” for acceleration of the object. Understanding the graphical representation of motion was important in helping students understand how position‚ velocity‚ and acceleration are affected with a moving object over a certain period of time. Using a motion detector and an Xplorer GLX‚ a calculator that graphed our distance velocity‚ and acceleration‚ students were able to create graphs for the information
Premium Acceleration Velocity Kinematics
Motions Go to http://phet.colorado.edu/simulations/sims.php?sim=Ladybug_Motion_2D and click on Run Now. Directions: 1. A Labybug was crawling in a circle around a flower like in the picture below. a. Sketch what you think the velocity and acceleration vectors would look like. b. If the flower is the “zero” position‚ what would the position vector look like? c. Use Ladybug Motion 2D to check your ideas. Make corrections if necessary 2. Suppose the bug
Premium Velocity Geometry Circle
stop? 3. where is car #1 when car #2 changes direction? 4. what is the average velocity of car #1 in km/hr? 5. estimate the instantaneous velocity (in km/hr) of car #2 at t = 43 min ? x / km car #1 20 10 car #2 0 20 10 30 40 t / min [1.2] Here is a plot of velocity versus time for an object that travels along a straight line (positive direction to the right) with a varying velocity. v/ m/s 1. at what time(s) is the object at rest? 20 2. what is the average
Free Force Friction Mass
Merrily We Roll Along! Purpose: To investigate the relationship between distance and time for a ball rolling down an incline. Data: Table A | Time (s) | Incline 25° | Distance (cm) | Trial 1 | Trial 2 | Trial 3 | Average | 20.5 | 0.31 | 0.32 | 0.29 | 0.31 | 41 | 0.47 | 0.27 | 0.38 | 0.37 | 61.5 | 0.51 | 0.52 | 0.31 | 0.45 | 82 | 0.67 | 0.54 | 0.45 | 0.55 | 102.5 | 0.69 | 0.90 | 0.58 | 0.72 | 123 | 0.88 | 0.67 | 0.58
Premium Velocity Classical mechanics Kinetic energy
Science 10. P 393 Investigation 13A Time (sec) Displacement (cm down) Velocity ( down) 0 0 0 0.1 0.6 = Df – Di = 0.6 – 0 = 0.6 = 0.2 1 = Df – Di = 1 – 0.6 = 0.4 = 0.3 3.3 = Df – Di = 3.3 – 1 = 2.3 = 0.4 5.9 = Df – Di = 5.9 – 3.3 = 2.6 = 0.5 7.4 = Df – Di = 7.4 – 5.9 = 1.5 = 0.6 8.7 = Df – Di = 8.7 – 7.4 = 1.3 = 0.7 10.1 = Df – Di = 10.1 – 8.7 = 1.4 = 0.8 11.4 = Df – Di = 11.4 – 10.1 = 1.3 = 0.9 12.9 = Df – Di = 12.9 – 11.4 = 1.5 = 1.0 11.8 = Df – Di = 11.8 – 12.9 = -1.1 = 1
Premium Acceleration Velocity Kinematics
AP Physics Slinky Velocity Lab Group: Asaf Yankilevich‚ Lily Greenwald‚ Yaeli Eijkenaar‚ Michal Antonov 2/23/15 Materials ● Slinky ● Spring weight ● Force measurer ● Measuring Tape ● Timer Procedure 1. The first slinky’s mass was weighed‚ using a scale‚ and its tension was measured using a force measurer 2. The slinky was stretched to 4m. 3. The linear mass density was solved for‚ by dividing the mass by the length. 4. The theoretical velocity was solved for‚ using the equation
Premium Force Kinetic energy Velocity
Graphical Analysis of Motion Introduction To graphically analyze motion‚ two graphs are commonly used: Displacement vs. Time and Velocity vs. Time. These two graphs provide significant information about motion including distance/displacement‚ speed/velocity‚ and acceleration. The displacement and acceleration of a moving body can be obtained from its Velocity vs. Time graph by respectively finding the area and the slope of the graph. Data Tables – Part I Displacement (m) Time (s) 0.10 m
Premium Acceleration Velocity Classical mechanics
SCIENCE CLASS – IX SAMPLE PAPER SA – 1 General Instructions: MM: 90 The question paper comprises of two sections‚ A and B. You are to attempt both the sections. i) All questions are compulsory. ii) There is no overall choice. However‚ internal choice has been provided in all the five questions of five marks category. Only one option in such questions is to be attempted. iii) All questions of Section A and all questions of Section B are to be attempted separately. iv) Question numbers 1 to
Premium Force Velocity Acceleration
percentage difference between the initial velocity calculated with kinematics and momentum are 0.0515%‚ which shows the calculation of initial velocity using the two different ways have a relatively similar answer. The percentage error between the theoretical value of initial velocity measured with photo gate and lab quest and the experimental value calculated with kinematics is 0.02473%. The percentage error between the theoretical value of initial velocity measured with photo gate and lab quest and
Premium Velocity