Rotational Dynamics Abstract Rotational dynamics is the study of the many angular equivalents that exist for vector dynamics‚ and how they relate to one another. Rotational dynamics lets us view and consider a completely new set of physical applications including those that involve rotational motion. The purpose of this experiment is to investigate the rotational concepts of vector dynamics‚ and study the relationship
Premium Force Torque Classical mechanics
Projectile Motion PHYS111 Formal Report 2 University of Canterbury Campbell Moulder Abstract The force of gravity is said to be a constant of 9.81 ms-2 (3). This can be proved by measuring the projectile motion of a bouncy ball and plotting a ∆Vertical Velocity vs. Time graph‚ the gradient of which should equal the constant force (acceleration due to) of gravity. Our gradient value of 10.26±0.49 ms-2 is consistent with the actual value of 9.81 ms-2. Introduction A projectile is an
Free Force Classical mechanics Newton's laws of motion
Projectile Motion You have probably watched a ball roll off a table and strike the floor. What determines where it will land? Could you predict where it will land? In this experiment‚ you will roll a ball down a ramp and determine the ball’s velocity with a pair of Photogates. You will use this information and your knowledge of physics to predict where the ball will land when it hits the floor. [pic] Figure 1 objectives * MEASURE THE VELOCITY OF A BALL USING TWO PHOTOGATES AND
Premium Velocity Measurement Acceleration
Purpose/ Hypothesis: The purpose of the lab is to explore some of the variables that influence projectile motion using a Rubber Band Cannon and launching rubber bands and measuring its horizontal distance and angle at which the rubber bands has been launched.. Materials: Materials used for the lab were a Cardboard Box‚ a 30cm ruler‚ rubber bands‚ a measuring tape‚ tape‚ a pencil‚ a paper protractor cut out‚ and scissors. Procedure: For the lab‚ scissors were used to cut the paper protractor cutout
Premium Ruler Measurement Stationery
LAW TONG &AIDEN 2013/9/23 AP PHYSICS B Mr. Moss THE LAB OF ATWOOD Procedure: The purpose of this experiment was to verify the predictions of Newton’s Law for an Atwood machine‚ a simple machine constructed by hanging two different masses and from a string passing over pulleys and observing their acceleration.. Newton’s Law predicts that the acceleration should be proportional to the difference between the masses and proportional to their sum‚ where = 9.8 m/s2 is the
Premium Mass Atwood machine
Experiment 1.7: Graphical Analysis of Motion Introduction To graphically analyze motion‚ two graphs are commonly used: Displacement vs. Time and Velocity vs. Time. These two graphs provide significant information about motion including distance/displacement‚ speed/velocity‚ and acceleration. The displacement and acceleration of a moving body can be obtained from its Velocity vs. Time graph by respectively finding the area and the slope of the graph. Data Tables – Part I Displacement
Premium Acceleration Velocity Classical mechanics
Incline Lab Purpose – The purpose of this experiment was to find how position and time are related to a ball on an incline. Data – 7 Books X (cm) | Trial 1 (s) | Trial 2 (s) | Trial 3 (s) | Average (s) | 10 | 0.336 | 0.3654 | 0.3434 | 0.3479 | 15 | 0.3952 | 0.4262 | 0.43 | 0.4171 | 50 | 0.9127 | 0.8846 | 0.8936 | 0.8971 | 75 | 1.1257 | 1.1178 | 1.1322 | 1.1252 | 100 | 1.320 | 1.2788 | 1.2979 | 1.2989 | 125 | 1.4924 | 1.4966 | 1.4766 | 1.4885 | 4 Books X (cm) | Trial 1 (s) |
Premium Acceleration Derivative
Lab Report: Projectile MotionChange Launch Angle 03/05/2012 James Allison section 20362 Group 5 James Allison‚ Clint Rowe‚ & William Cochran Objective: In this lab we will compare different parameters of a launched projectile. This includes time of flight‚ initial velocity‚ initial vertical velocity‚ initial horizontal velocity‚ range‚ time of max height. All these data points are collected for 30°‚ 40°‚ 45°‚ 50°
Premium Range of a projectile Velocity Airport
Name Noah Meador___ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens‚ click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 1. The green line points in the direction that the ball is going to go 2. The blue line changes the
Premium Velocity Kinematics Classical mechanics
There are several definitions of what the term motion sickness really means. According to the article Effects of Motion Sickness Severity on the Vestibular-Evoked Myogenic Potentials by Cynthia Fowler‚ Amanda Sweet‚ and Emily Steffel (2014)‚ explained that motion sickness is defined by unconscious and physical indicators of displeasure. Motion sickness can be caused by various forms of movement. Some movements could be made through transportation such as cars‚ air planes‚ subways‚ trains‚ and boats
Premium Ear Auditory system Vestibular system