Physics 223-101 Atwood’s Machine DATA TABLE Part 1: Keeping Total Mass Constant | Trial | m1(g) | m2(g) | Acceleration(m/s2) | Δm(kg) | mT(kg) | 1 | 200 | 200 | 0 | 0 | 0.400 | 2 | 205 | 195 | -0.174 | 0.01 | 0.400 | 3 | 210 | 190 | -0.382 | 0.02 | 0.400 | 4 | 215 | 185 | -0.607 | 0.03 | 0.400 | 5 | 220 | 180 | -0.830 | 0.04 | 0.400 | | | | | | | Part II: Keeping the Mass Difference Constant | Trial | m1(g) | m2(g) | Acceleration(m/s2) | Δm(kg) | mT(kg) | 1 |
Premium Harshad number Mass Angle
Experiment 1: Simple Distillation and Boiling Points- Separation of Liquids February 24‚ 2014 Analysis In this experiment‚ the distillation of three groups of two miscible liquids was performed. First‚ Ethanol and 2-Propanol were distilled. The boiling points of ethanol and 2-propanol had a difference of 5°C. The percent recovery for both ethanol and 2-propanol were both 0%. The percent recovery of the intermediate was 96%. The percent efficiency calculated of ethanol and 2-propanol was 0% efficient
Premium Distillation Evaporation Water
Kalia Townsend Earth Science A2 5/28/14 ECCENTRICITY LAB REPORT Keplar’s First Law of Planetary Motion: The orbit of every planet is an ellipse with the sun at one of the foci. The purpose of this lab is to demonstrate Keplar’s First Law of Planetary Motion by calculating the eccentricity of ellipses. The 3 main words that were important in this lab exercise was eccentricity‚ ellipse‚ and foci. Eccentricity means the degree of ovalness of an ellipse or how far an ellipse is from being a circle.
Premium Planet Sun Mercury
Procedure: The addition of 4.0 mL cyclohexanol‚ 1.0 mL of 85% phosphoric acid‚ and one boiling chip‚ were all added to a 10 mL round bottom flask that would be attached to the end of an assembled simple distillation set up. A sand bath was placed atop a hot plate‚ and the simple distillation mechanism was lowered into the sand bath with the bottom most piece (the 10 mL round bottom flask) submerged about half way. The distillation process was completed after a sufficient amount of liquid distillate
Premium Chemistry Water Hydrochloric acid
Introduction: Aim: To find the relationship between the length of a simple pendulum and the period of oscillation. Research question: How does the string length of the pendulum affect the period of oscillation? Prediction: The longer the string‚ the longer it will take to make one complete oscillation. Variables: Independent variable: Length (L). Dependent variable: Period of oscillation (T). Controlled variable: Mass of the plasticine. Tools & Materials: Stopwatch. Ruler. String. Plasticine
Premium Pendulum Orders of magnitude Simple harmonic motion
Table Of Contents PHS 100-552 Lab Part I: Scenario H Graph……………………………………………… 2 Scenario H Regions and Force Diagrams…………………………….3 Region and Force Diagram Information……………………………...4 Part II: Graph 6 ………………………………………………………….5 Step-By-Step Instruction………………………………………………..6 Regions and Force Diagrams……………………………………………7 Region Information……………………………………………………….8 Newton’s Laws…………………………………………………………… 9 Self-Assessment…………………………………………………..……..10 Scenario H You are stopped
Premium Force Acceleration Classical mechanics
The purpose of this lab was to learn about Newton’s laws of motion by completing an experiment‚ to see how the forces act on objects. The independent variable of this experiment is the type and amount of materials used for the interior of the vehicle (out of the material list) and how they were used. The dependent variable is how and if the interior of the vehicle protected the egg from getting cracked. The controlled variables of this experiment were the height that the vehicle was dropped from
Premium Force Classical mechanics Mass
top of the cup‚ the shorter the distance of the cup moved and it included all of the three Newton’s laws. My hypothesis actually turned out to be accurate. It’s really fascinating that how only 1 experiment can prove all of Newton’s three laws of motion just like that. When the marble was getting released from the ramp I observed it hitting the cup and surprisingly the cup didn’t fall off or changed directions it went in a straight path. For 1 penny we got the longest distance such as 4cm for trail
Premium Classical mechanics Force Physics
Lab: Newton’s Law of Motion Section #: 404 Group #: 3 Experiment #: 3 Date :October 16‚ 2012 Newton’s Law of Motion Your signature indicates that you have completely read the entire report and agree with everything here in. Failure to sign will result in a zero for your personal grade unless a formal exception is filed with your TA. Please Print and Sign Full Name Principal investigator: Skeptic ________________________________________________________ Researcher:
Premium Newton's laws of motion Classical mechanics Mass
Name Noah Meador___ Motion in 2D Simulation Go to http://phet.colorado.edu/simulations/sims.php?sim=Motion_in_2D and click on Run Now. 1) Once the simulation opens‚ click on ‘Show Both’ for Velocity and Acceleration at the top of the page. Now click and drag the red ball around the screen. Make 3 observations about the blue and green arrows (also called vectors) as you drag the ball around. 1. The green line points in the direction that the ball is going to go 2. The blue line changes the
Premium Velocity Kinematics Classical mechanics