volume. In this case‚ experimenters were given aqueous solutions of NaOH and CaCl2 in known molarities and then had them react with one another to yield a precipitate of Ca(OH)2. The precipitate was filtered out of the remaining aqueous solution of stoichiometry. In our case‚ all four tests yielded more mass than should have occurred. Experimenters attribute this completely evaporated from the filtered precipitate‚ which would add excess mass. By dealing with such small quantities of reagents‚ any small
Premium Chemistry Sodium Concentration
Modbury High School SACE Stage 1 Chemistry Topic 5 Mole Concept and Stoichiometry Assignment 5: Volumetric analysis (titrations)‚ stoichiometry SOLUTIONS Note: Write answers neatly and legibly in your exercise book or on pad paper. ALWAYS include a title and name for your work and clearly indicate each answer. 1. a) 23.08 and 23.00 mL are concordant titre values. Average titre = (23.08 + 23.00) = 23.04 mL 2 b) Ca(OH)2
Premium Acetic acid Titration Laboratory glassware
Experiment 3: Stoichiometry of a Precipitation Reaction Abstract: In this experiment‚ the objective is to use Stoichiometry to predict the amount of product produced in a precipitation reaction. We received working knowledge of how to accurately measure reactants and products of the reaction. We then are able to use the data that we recorded to make assessments of the actual yield opposed to the theoretical yield. When we calculated the percent yield we are able
Premium Stoichiometry
Basic Stoichiometry PhET Lab rvsd 2/2011 Let’s make some sandviches! _ Introduction: When we bake/cook something‚ we use a specific amount of each ingredient. Imagine if you made a batch of cookies and used way too many eggs‚ or not enough sugar. YUCK! In chemistry‚ reactions proceed with very specific recipes. The study of these recipes is stoichiometry. When the reactants are present in the correct amounts‚ the reaction will produce products. What happens if there are more or less of
Premium Stoichiometry Hydrogen Chemical reaction
Ocean County College Department of Chemistry Stoichiometry of a Precipitation Reaction Submitted by Hendy Zelishovsky Date Submitted: 4/26/2012 Date Performed: 4/25/2012 Lab Section: Chem-180-DL1 Course Instructor: Dr. Cynthia Spencer Purpose
Premium Stoichiometry Yield Water
Lab Report for Experiment #10 Stoichiometry of a Precipitation Reaction Student’s Name ____________________ Date of Experiment ___________ Date Report Submitted _________________ Title: Purpose: Instructor Changes: Weigh out about 1.7 g of CaCl2·2H2O and record your mass to +/- 0.1 g (for example 1.6 g‚ 1.7 g‚ or 1.8 g). We have made this change so that you will have 2 sig figs in subsequent calculations. Have you made any changes to the procedure? Please explain: Data Tables and Observation:
Premium Stoichiometry Mole Mass
The calculations completed for this experiment include determining the amount of Na2CO3 needed to do a full reaction. This was calculated through stoichiometry calculations: Molar mass was first calculated for CaCl2*2H2O Ca = 40.078g Cl2 = 35.453g*2 = 70.906g 2H2 = 1.00794g*4 = 4.03176g 2O = 15.9994g*2 = 31.9988g 40.078g + 70.906g + 4.03176g + 31.9988g = 147.01456g or 147.0 g CaCl2 1g CaCl2 * 2H2O x (1 mol CaCl2 *2H2O/147g CaCl2 *2H2O) = 0.0068 mol of CaCl2*2H2O Molar mass was then
Premium Stoichiometry
Stoichiometry Section 11.1 What is stoichiometry? In your textbook‚ read about stoichiometry and the balanced equation. For each statement below‚ write true or false. _______true___________ 1. The study of the quantitative relationships between the amounts of reactants used and the amounts of products formed by a chemical reaction is called stoichiometry. ________true__________ 2. Stoichiometry is based on the law of conservation of mass. _________false_________ 3. In any chemical reaction‚ the
Premium Stoichiometry Oxygen Mole
IB CHEMISTRY Stoichiometry Lab Data Collection and Processing Item | Mass | Small beaker (100 mL) | 47.0 grams | Large beaker (150 mL) | 82.4 grams | Mass of filter paper | 0.50 grams | Mass of coffee filter | 1.00 gram | 150mL beaker + 20mL water + lead nitrate solution | 96.1 grams | 100mL beaker + 20mL water + sodium carbonate solution | 64.2 grams | Watch glass | 32.2 grams | Precipitate + filter paper + coffee filter | 2.20 grams | Precipitate + 150mL + coffee filter
Premium Stoichiometry Water Yield
Copper-Iron Stoichiometry Lab Report 10/3/12 Abstract: The lab performed required the use of quantitative and analytical analysis along with limiting reagent analysis. The reaction of Copper (II) Sulfate‚ CuSO4‚ mass of 7.0015g with 2.0095g Fe or iron powder produced a solid precipitate of copper while the solution remained the blue color. Through this the appropriate reaction had to be determined out of the two possibilities. Through the use of a vacuum filtration system the mass of Cu was
Premium Stoichiometry Iron Copper