Introduction DNA‚ or deoxyribonucleic acid‚ is a double stranded helical structure used to store genetic information in cellular organisms. DNA usually consists of two strands made up of nucleotides‚ each with a backbone of repeating units of phosphate groups and the sugar‚ deoxyribose‚ bonded by phosphodiester linkages. Since the deoxyribose has a specific orientation‚ DNA molecules have directionality so that DNA sequences are read 5’ to 3’. The 5’ end of DNA is characterized by the deoxyribose
Premium DNA Gene Genetics
are eight types of chemical reactions. These eight reactions are Decomposition‚ Composition‚ Acid/Base‚ Synthesis‚ Single-Replacement‚ Double-Replacement‚ Precipitation‚ and Redox. Though these eight could be referred to as the same due to them being chemical reactions. They are actually very different. An example of this difference is Decomposition and Synthesis. Decomposition is when a compound is broken into smaller chemical species while a Synthesis reaction is two or more chemical species combining
Premium Oxygen Chemistry Hydrogen
1: INTRODUCTION When studying the function of catalysts in reactions during the kinetics unit‚ I was eager to know more about the position of enzymes‚ which function as biological catalysts in biological systems. After doing some further research‚ I found that catalase‚ an enzyme‚ which is found in nearly all living organisms such as animals‚ catalyses the decomposition of hydrogen peroxide (H2O2) in the blood. H2O2 is produced by reactions in the white blood cells in our body to fight against diseases
Premium Oxygen Hydrogen peroxide Chemical reaction
Experiment three was divided into three parts; the preparation of the solutions‚ the reaction between Hydrochloric Acid and Ammonium Hydroxide (part b)‚ and the formation of Magnesium Oxide (part c). 200 mL of deionized water were added to a beaker followed by the addition of 100 mL 6 M HCl‚ which reacted to make 300 mL of a 2 M HCl solution used for Part B. Next‚ 50 mL of deionized water were added to a separate beaker and then 100 mL 3 M NaOH were added to the beaker to form 150 mL of a 2 M NaOH
Premium Chemistry Water Sodium hydroxide
Demonstration of the Rates of Reaction Between Sulphuric Acid (25mL ±0.5mL) and Magnesium (0.02g ±0.01g) Changing Due to Different Surface Areas By Chania Baldwin Introduction: When sulphuric acid and magnesium are added together‚ magnesium sulphate and hydrogen gas is created. To create such a reaction the atoms must collide with a sufficient amount of energy. Every reaction requires a different amount of energy to create the reaction‚ which is called the activation energy; when there is not enough
Premium Chemical reaction Chemical kinetics Surface area
by Georg Wittig in 1954‚ the Wittig reaction is a robust organic synthesis method for preparing stereospecific alkenes. In general‚ Wittig reactions involve an aldehyde or ketone and a Wittig reagent (triphenylphosphonium ylide) and result in the formation of an alkene product and triphenylphosphine oxide (side product). Stereospecific alkene products can be synthesized by adjusting the reaction reagents and conditions. In the 60 years since the Wittig reaction was discovered‚ many articles have
Premium Alkene Aldehyde Chemical reaction
CHEM111AC‚ Experiment#9 - Ionic Reactions Discussion/Error Analysis In the first part of this experiment‚ the student was presented with 7 unique and unidentified bottles of solutions labeled A-G and was expected to be able to analyze the 7 solutions through trial and error and mixing them with one another. For solution A: mixing A + B formed a precipitate‚ A + C generated heat‚ A + D gave no reaction‚ A + E gave no reaction‚ A + F gave no reaction‚ A + G formed a precipitate. For solution B: mixing
Premium
of the reaction: The effect of the temperature of the reaction on the activity of the purified enzyme was carried out by make the enzymatic reaction for 10 minutes at different temperature 25‚30‚35‚40‚45‚50‚60 and 70°C using an enzyme protein 0.1mg/reaction mixture and substrate concentration of 15 mg/reaction mixture‚ using a control of previously heated enzyme solution in the reaction. The data recorded in (table 27) and (figure 29) illustrate the effect of temperature of the reaction on the pectinase
Premium
98.) Consider the unbalanced redox reaction: Cr2O72- (aq ) + Cu(s ) → Cr3+ (aq ) + Cu2+ Balance the equation in acidic solution and determine how much of a 0.850 M K2Cr2O7 solution is required to completely dissolve 5.25 g of Cu. Nitric acid is usually purchased in concentrated form with a 70.3% HNO3 concentration by mass and a density of 1.41 g/mL. How much of the concentrated stock solution in milliliters should you use to make 2.5 L of 0.500 M HNO3? Mass %= Mass Solute/ Mass Solvent + Mass
Premium Chemistry Solubility Hydrogen
Grignard Reaction: Synthesis of Triphenylmethanol Hai Liu TA: Ara Austin Mondays: 11:30-2:20 Abstract: In this experiment‚ phenylmagnesium bromide‚ a Grignard reagent was synthesized from bromobenzene and magnesium strips in a diethyl ether solvent. The Grignard reagent was then converted to triphenylmethanol‚ a tertiary alcohol with HCl. The reaction for phenylmagnesium bromide was: The reaction for Grignard to triphenylmethanol was: In the formation of the Grignard reagent
Premium Magnesium Diethyl ether Oxygen