1. the Monera
The five-kingdom system of classification for living organisms, including the prokaryotic Monera and the eukaryotic Protista, Fungi, Plantae and Animalia is complicated by the discovery of archaebacteria. The prokaryotic Monera include three major divisions: The regular bacteria or eubacteria; the cyanobacteria (also called blue-green algae); and the archaebacteria. Lipids of archaebacterial cell membranes differ considerably from those of both prokaryotic and eukaryotic cells, as do the composition of their cell walls and the sequence of their ribosomal RNA subunits. In addition, recent studies have shown that archaebacterial RNA polymerases resemble the eukaryotic enzymes, not the eubacterial RNA polymerase.
Archaebacteria also have introns in some genes, an advanced eukaryotic characteristic that was previously unknown among prokaryotes. In eukaryotic cells, the initial messenger RNA (M-RNA) transcribed from the DNA (gene) is modified (shortened) before it leaves the nucleus. Sections of the M-RNA strand called introns are removed, and the remaining portions called exons are spliced together to form a shortened (edited) strand of mature M-RNA that leaves the nucleus and travels to the ribosome for translation into protein. This process is known as "gene editing." Some authorities hypothesize that eukaryotic organisms may have evolved from ancient archaebacteria (archae = ancient) rather than from the common and cosmopolitan eubacteria. The archaebacteria could have flourished more than 3 billion years ago under conditions previously thought to be uninhabitable to all known life forms.
2. the Protista (Protoctista)
The kingdom Protista includes a diverse array of organisms, from minute flagellated cells to macroscopic kelp. The smallest microscopic organisms are termed protists, consequently some biologists prefer to call this kingdom the Protoctista rather than Protista. All