Erythrocytes, or red blood cells, possess a unique structure that enables them to play their role in oxygen transport. They are small, at 7μm in diameter, compared to that of average animal cells (approximately 20μm). This allows them to be transported via the thin-walled capillaries, which have very small lumen of less than 8μm in diameter, carrying oxygen as close as possible to the respiring tissues. Haemoglobin within the small red blood cell can exchange oxygen with the external environment quickly, as they are close to the plasma membrane; this again allows efficient diffusion of oxygen.
Red blood cells are described as biconcave discs, flat, with a dent in both sides. This shape defines the cell's large surface area to volume ratio, indicating that oxygen can be transferred quickly between the cell and its surroundings, as haemoglobin molecules are close to the cell plasma membrane.
Unlike general animal cells, erythrocytes lack nuclei, mitochondrion and endoplasmic reticulum, giving space more haemoglobin can be carried by the red blood cells with such a structure, hence increasing the number of oxygen molecules being transported. The structure of red blood cells maximizes the amount of oxygen carried in the blood and the rate at which they reach and diffuse into oxygen requiring cells.
Oxygen is combined with haemoglobin in red blood cells in order to be transported. The four polypeptide chains of a haemoglobin