Preview

Ampicillin And Kanamycin Reaction Lab Report

Good Essays
Open Document
Open Document
414 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Ampicillin And Kanamycin Reaction Lab Report
DISCUSSION
In this experiment, we will extract plasmid DNA that carrying pKan and pAmp from E. coli that have been cultured overnight in LB media containing antibiotic kanamycin and ampicillin respectively. So, the DNA that will be introduced later will make the bacteria resistance to antibiotic kanamycin or ampicillin. A plasmid is a small, circular, double stranded DNA molecules and cloning vector that are widely used for recombinant DNA technology. It can be physically separated from chromosomal DNA and can replicate on its own or independently. A plasmid required a bacterial origin, an antibiotic resistance gene, (in this case, Ampicillin and Kanamycin resistance) and at least one unique restriction enzyme recognition site. For rapid alkaline

You May Also Find These Documents Helpful

  • Satisfactory Essays

    For the completion of this experiment the procedures were guided with the Rainbow Transformation1 lab manual. An Escherichia coli bacterial reference plate was used to obtain colonies which were resuspended into a CaCl2 solution that was previously kept on an ice bath. The rainbow transformation mixture containing the plasmid DNA was then added to half of the E. coli cells. These cells were later placed into a water bath set to 42ºC and “heat shocked” to promote the entrance of DNA into the cells. Moreover, a Recovery Broth was added to the sample and the sample was left undisturbed for 30 minutes at room temperature so the “heat shocked” bacteria would acquire the antibiotic resistance gene.…

    • 362 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Learning Goals: Insert your uncut unknown plasmid into chemically competent DH-5 E.coli cells and use antibiotic resistance to confirm the success of the transformation. You should familiarize yourself with the various methods of transformation and the advantages/disadvantages of each type. You should also understand how heat shock transformation works and how chemically competent cells make this type of transformation possible. For this transformation antibiotic markers associated with foreign pieces of DNA will be used to help verify that the DNA of interest was successfully inserted into the vector.…

    • 2055 Words
    • 7 Pages
    Good Essays
  • Good Essays

    The topic of this research involved the occurrence of genetic transformation in bacteria (E. Coli). More specifically, a previously prepared pGLO plasmid--which consisted of the gene to be cloned--was used to transform non-pathogenic bacteria. The pGLO plasmid contained a gene for the Green Fluorescent Protein (GFP) from a bioluminescent jellyfish and a gene for resistance to ampicillin, an antibiotic. Essentially, we wanted to determine the conditions of the bacteria that would glow. Our hypothesis was that the transformed solution with no plasmid DNA and ampicillin would produce no bacteria colonies, as it wouldn 't be able to grow without the gene for ampicillin resistance. Also, the transformed solution with just LB and ampicillin would produce bacteria colonies but the transformed solution with LB/ampicillin/Arabinose would produce glowing bacteria colonies (as Arabinose allows the GFP gene to be expressed, but in both cases bacteria colonies would be present because of the gene of resistance to the antibiotic, ampicillin). We essentially made the required transformed solutions--and the controls--swiped them on the agar plate, and then observed to see whether or not bacteria colonies grew and whether or not they glowed. Our data fully supported our hypothesis. We can thus conclude that bacteria can take in foreign DNA through the process of transformation and that this foreign DNA can fundamentally change the bacteria (ex: making it glow). Future research can involve inserting other pieces of DNA into bacteria from different organisms, making the bacteria take on various phenotypic characteristics.…

    • 1330 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Plasmids are small circular autonomously replicating pieces of DNA that can be found inside of a prokaryotic bacterial cell. By barrowing a cell’s polymerase they replicate their own DNA. They are easy to extract from the bacterial cells due to their size. Plasmids are helpful for cloning foreign genes because of their ability to express antibiotic resistance as well their ability to be modified to express proteins of interest. A pGLO plasmid contains genes for the green florescent protein (GFP) as well as the gene for ampicillin resistance known as beta-lactamase. It also contains a gene regulation system (operon) that has the ability to control expression of the GFP gene in transformed cells known as araC. The source of GFP is naturally founds within a…

    • 463 Words
    • 2 Pages
    Good Essays
  • Better Essays

    Lab 7 & 8 Assignment

    • 1108 Words
    • 4 Pages

    A genomic library is a “collection of recombinant vectors or clones, among which is representative of the entire genome of the organism” (BIMM 101 Lab Manual, 47). In order to create a genomic library, genomic DNA from Vibrio fischeri was first isolated then treated with Sal I restriction enzyme to generate inserts (smaller fragments of DNA). Sal I restriction enzyme was also used to treat the vector plasmid in order to digest the V. fischeri DNA fragments. The inserts and the vector were then ligated together. E.Coli cells were then made competent in order to take up the plasmid DNA by transforming these competent cells with a “ligation mixture to create a population of host bacteria containing different combinations of the ligated inserts and vector” (BIMM 101 Lab Manual, 46). A colony indicated that the cell had taken up the vector. Whether or not that colony contained the genes of interest was determined by screenings such as antibiotic resistance, blue-white color screening, and luminescence. A bioluminescent colony immediately indicated the desired genes and where re-streaked while the plasmids of non-glowing white colonies where further isolated and sequenced for the desired genes.…

    • 1108 Words
    • 4 Pages
    Better Essays
  • Better Essays

    Pglo Transformation

    • 1825 Words
    • 8 Pages

    The purpose of this experiment was to show the genetic transformation of E. coli bacteria with a plasmid that codes for Green Fluorescent Protein (GFP) and contains a gene regulatory system that confers ampicillin resistance. A plasmid is a genetic structure in a cell that can replicate independently of chromosomes. In this lab, the Green Fluorescent Protein, which is typically found in the bioluminescent jellyfish Aequorea Victoria, was cloned, purified, and moved from one organism to another with the use of pGlo plasmids. It was hypothesized that if bacteria that were transformed with +pGlo plasmids are given the gene for GFP, then transformed cell colonies will be located on the LB/amp/ara and LB/amp agar plates. Cells that have been transformed with +pGlo plasmids have the ability to grow in ampicillin plates, and the arabinose sugar allows the colonies to be visibly fluorescent under ultraviolet light. The GFP is able to resist ampicillin because of the Beta- Lactamase protein that is produced and secreted by the bacteria that have been transformed to include it in their plasmids. Arabinose is a carbohydrate, normally used as a source of food by bacteria. Bacterial colonies are not able to grow on –pGlo plates because they are sensitive to ampicillin. In this lab, I will move the GFP gene from one organism to another with the use of pGlo plasmids.…

    • 1825 Words
    • 8 Pages
    Better Essays
  • Better Essays

    pBlu lab

    • 1164 Words
    • 5 Pages

    This pBlu lab had for purpose to present the changes of the strain of E. coli bacteria due to new genetic information being introduced into the cell. In this experiment we are freezing and heat shocking the E. Coli bacteria that is then forced to take the plasmid DNA. The E. coli then transforms the pBLu plasmid, which carries the genes coding for two identifiable phenotypes. After following the Carolina Biological steps our lab worked well and we able to see some colonies of bacteria on the plates. The x-gal plate showed a significant amount of bacteria to confirm that the pBlu plasmid took over the E. coli strain.…

    • 1164 Words
    • 5 Pages
    Better Essays
  • Good Essays

    E. Coli Lab Report

    • 811 Words
    • 4 Pages

    The purpose of this lab is to successfully infiltrate E. coli bacterial cells with a pARA-R plasmid that is antibiotic resistant and has the rfp gene, or red fluorescent protein. This can be verified if the E. coli obtains the characteristics of the plasmid when it enters. To start, three Petri plates containing agar are needed. On each plate there is a control group and a treatment group; the treatment group being the one with the plasmid. Before the plasmid is put with the E. coli, first the bacteria are “stressed out” by warming them up in a hot water bath and cooling them down very rapidly in ice. The first plate consists of Luria Broth (LB), the second plate consists of LB and the antibiotic ampicillin (amp), and the last one contains LB, amp, and the sugar arabinose (ara). The bacterial cells are subjected to a heat shock and then are placed onto the three plates. The plasmid is spread on to only half of the first two plates, on the sides of the treatment group. Half of the E. coli get the plasmids and the other half do not (that side being the control group). On the third plate the plasmids are spread on the whole plate. The bacteria are left in an…

    • 811 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    Transformation is the manipulation of a bacterial cell's DNA in order to alter the cell's genotype or phenotype by absorbing free DNA from its surroundings. In this lab, pVIB plasmid will be used. A plasmid is a segment of DNA that can incorporate itself into the bacterial DNA. Although is not required for growth of the bacterial cell, plasmids can provide advantages in stressful environments such as the ability to adapt as environmental changes occur. In this lab, we will obtain a better understanding of bacterial transformations using pVIB.…

    • 842 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    Coli on a plate of LB agar. We then put 250 µn of CaCl2 transformation solution into two micro test tubes for the purpose of changing the bacterium’s cell wall to allow the pGLO plasmid to enter more easily. Second, we placed one colony of E. Coli from our original plate into each of the micro test tubes. Subsequently, we extracted a loopful of pGLO plasmid with a sterile loop and then placed it in one of the micro test tubes. We incubated the tubes on the ice for ten minutes while we prepared four new agar plates. One plate for +pGLO E. Coli on agar with ampicillin, one plate for +pGLO E. Coli on agar with ampicillin and arabinose, one plate for -pGLO E. Coli on agar with ampicillin, and one plate for -pGLO E. Coli on plain LB agar. After ten minutes had passed, we heat-shocked the bacteria by transferring the tubes into a hot water bath for 50 seconds and then rapidly transferring them back to the ice. After the tubes had remained in the ice for two minutes, we removed them from the ice and added 250 µm of LB nutrient broth to them. Next, we let the tubes rest at room temperature for ten minutes. After ten minutes had passed, we added the corresponding bacterial suspensions to the plates and then placed the plates in a 37ºC incubator for twenty-four…

    • 702 Words
    • 3 Pages
    Good Essays
  • Better Essays

    The First

    • 1338 Words
    • 6 Pages

    In the first part of this lab, E.coli cells were transformed with an R-plasmid carrying a tetracycline resistant gene, giving rise to tetracycline resistant E.coli strain. This was accomplished through transformation, which allowed E.coli to directly uptake the naked DNA molecule carrying the antibiotic resistant gene (1). However, in order to take up the DNA and incorporate them into their genome via recombination, cells must be competent (1). Therefore, E.coli cells which are not competent under normal conditions were treated with cold and high concentration of CaCl2, in order to make them artificially competent (1). The transformants were grown on the LB with the tetracycline antibiotic, and on the LB without the tetracycline. Then the viable competent cells and the viable cells were counted to calculate the frequency of transformation.…

    • 1338 Words
    • 6 Pages
    Better Essays
  • Powerful Essays

    Two experiments were done to identify an unknown plasmid. The success of these experiments came from the use of modern day technology involving gel electrophoresis. First, bacterial transformation to E. Coli DH5 was performed on our unknown plasmid along with two known plasmids, pAMP and pKAN, and a negative control TE, a buffer without DNA. By performing confluency streaking of bacteria in plates containing antibiotics, we were able to examine the recombinant DNA of the bacteria. After incubation of the plates, we analyzed the samples and found that our unknown plasmid reacted positively on the LB/AMP plate. There were a total growth of three colonies on the LB/AMP plate and a negative result on the LB/KAN plate. With this data along with the positive reaction of pAMP on the LB/AMP plate, we came to the conclusion that our unknown plasmid was pAMP. In our next experiment, we analyzed the DNA via gel electrophoresis. First, we had to treat our unknown plasmid. Three treatments were performed: Uncut (U), single cut (S) with HindIII, and double cut (D) with HindIII and Bam H1. The gel was then stained with Ethidium Bromide, often used in chromatography, in order for us to view the gel under UV light. A photograph of the result was then printed out. This allowed us to determine the migration of each sample along with the number of base pairs in each fragment. Standard fragments of DNA were used to determine the size of our unknown plasmid, which at this point was pAMP. With the use of both pKAN and pAMP plasmid maps, we were able to solidify our conclusion that the unknown plasmid was pAMP.…

    • 3383 Words
    • 14 Pages
    Powerful Essays
  • Powerful Essays

    Pglo Lab

    • 1283 Words
    • 6 Pages

    In this exercise you will attempt to transform E. coli with a plasmid containing genes for phosphorescence, and for resistance to the antibiotic ampicillin. Plasmids are usually small, circular pieces of DNA that replicate independently of the bacterial chromosome. Many plasmids have been modified to function as vectors, or vehicles for transferring genes of interest from one organism to another. Plasmids that have been modified as cloning vectors usually…

    • 1283 Words
    • 6 Pages
    Powerful Essays
  • Powerful Essays

    This experiment is to determine the unknown DNA plasmid using restriction enzymes and conducting electrophoresis finally comparing the resulting fragments with the known restriction map. In this lab, it succeeds in showing the fragments. In this report we will discuss the, results, limitations and possible errors.…

    • 1175 Words
    • 5 Pages
    Powerful Essays
  • Good Essays

    Gene Cloning

    • 1802 Words
    • 8 Pages

    One aspect of the DNA cloning experiments that is carefully considered is the selection of cloning vectors. A variety of vectors have been created, each being suitable for a particular use. One common vector used in laboratories is a plasmid called pUC19. It is 2686 base pairs long and possesses an origin of replication which allows the production of over 100 copies in a competent E.coli cell. It possesses a multiple cloning site (MCS) which is artificially implanted by adding a polylinker sequence to it. The pUC19 plasmid is also altered by inserting a gene that codes for beta-lactamase which confers resistance to the antibiotic ampicillin (Read and Strachan 2011). The MCS occupies the 5’ end of the gene lacZ (Sherwood, Willey and Woolverton 2012). This gene codes for only the alpha-peptide of beta-galactosidase, an enzyme used to break down the disaccharide lactose into glucose and galactose (Read and Strachan 2011). The aim of this experiment is to incorporate a cDNA called CIH-1, from plasmid pBK-CMV, into pUC19.…

    • 1802 Words
    • 8 Pages
    Good Essays