Exchange rates play a vital role in a county's level of trade, which is critical to every free market economies in the world. Besides, exchange rates are source of profit in forex market. For this reasons they are among the most watched, analyzed and governmentally manipulated economic measures. Therefore, it would be interesting to explore the factors of exchange rate volatility. This paper examines possible relationship between EUR/AMD and GBP/AMD exchange rates. For analyzing relationship between these two currencies we apply to co-integration and error correction model.
The first part of this paper consists of literature review of the main concepts. Here we discussed autoregressive time series, covariance stationary series, mean reversion, random walks, Dickey-Fuller statistic for a unit root test. * The second part of the project contains analysis and interpretation of co-integration and error correction model between EUR/AMD and GBP/AMD exchange rates. Considering the fact, that behavior of these two currencies has been changed during the crisis, we separately discuss three time series periods: * 1999 2013 * 1999 to 2008 * 2008 to 2013.
--------------------------------
Autoregressive time series
A key feature of the log-linear model’s depiction of time series and a key feature of the time series in general is that current-period values are related to previous period values. For example current exchange rate of USD/EUR is related to its exchange rate in the previous period. An autoregressive model (AR) is a time series regressed on its own past values, which represents this relationship effectively. When we use this model, we can drop the normal notation of Y as the dependent variable and X as the independent variable, because we no longer have that distinction to make. Here we simply use Xt. For instance, below we use a first order autoregression for the variable Xt.
Xt=b0+b1*Xt-1+εt
Covariance stationary series