(pronounced ar-ka-meed-eez)
He is considered one of the greatest mathematicians in history. In fact, he is believed to be one of the three greatest mathematicians along with Isaac Newton and Carl Gauss. His greatest contributions to mathematics were in the area of Geometry. Archimedes was also an accomplished engineer and an inventor. He was believed to have been obsessed with Geometry though.
Archimedes was born in Syracuse, Greece in 287 BC and died 212 BC after being killed by a Roman soldier who did not know who Archimedes was. He was the son of an astronomer: Phidias of whom we know nothing about. Archimedes received his formal education in Alexandria, Egypt which at the time was considered to be the 'intellectual …show more content…
Alexandria was then the largest city in the western world, and the center of both the papyrus industry and the book trade. Ptolemy had created the great library at Alexandria, which was known as the Museum, because it was considered a house of the muses for the arts and sciences. Many scholars worked and taught there, and that is where Euclid wrote The Elements. There is some evidence that Euclid also founded a school and taught pupils while he was in …show more content…
19, 1662. His father, a local judge at Clermont, and himself of some scientific reputation, moved to Paris in 1631, partly to prosecute his own scientific studies, partly to carry on the education of his only son, who had already displayed exceptional ability. Pascal was kept at home in order to ensure his not being overworked, and with the same object it was directed that his education should be at first confined to the study of languages, and should not include any mathematics. This naturally excited the boy's curiosity, and one day, being then twelve years old, he asked in what geometry consisted. His tutor replied that it was the science of constructing exact figures and of determining the proportions between their different parts. Pascal, stimulated no doubt by the injunction against reading it, gave up his play-time to this new study, and in a few weeks had discovered for himself many properties of figures, and in particular the proposition that the sum of the angles of a triangle is equal to two right angles. I have read somewhere, but I cannot lay my hand on the authority, that his proof merely consisted in turning the angular points of a triangular piece of paper over so as to meet in the centre of the inscribed circle: a similar demonstration can be got by turning the angular points over so as to meet at the foot of the perpendicular drawn from the biggest angle to the opposite side. His