Class XI: Maths
Chapter 3: Trigonometric Functions
Top Formulae
1.
1 radian =
2.
1o =
180o
= 57o16 ' approximately π π radians = 0.01746 radians approximately
180o
3.
s= r θ
Length of arc= radius × angle in radian
4.
This relation can only be used when θ is in radians π Radian measure=
× Degree measure
180
180
× Radian measure π 5.
Degree measure =
6.
Trigonometric functions in terms of sine and cosine cos ec x =
1
, x ≠ nπ, where n is any int eger sin x
s ec x = tan x =
sin x π , x ≠ (2n + 1) , where n is any int eger cos x
2
cot x =
7.
1 π , x ≠ (2n + 1) , where n is any int eger cos x
2
1
, x ≠ nπ, where n is any int eger tan x
Fundamental Trigonometric Identities sin2x + cos2x = 1
1 + tan2x = sec2 x
1 + cot2x = cosec2x
Get the Power of Visual Impact on your side
Log on to www.topperlearning.com
2
8
Values of Trigonometric ratios:
0°
sin cos 1
tan
9.
0
0
π
4
1
π
6
1
2
π
3
2
3
2
1
2
1
3
2
1
3
2
1
3
π
2
π
3π
2
2π
10
0
–1
0
0
–1
0
1
not defined 0
not defined 0
Domain and range of various trigonometric functions:
Function
Domain
Range
y = sin x
π π
− 2 , 2
[–1, 1]
y = cos x
0, π
[–1, 1]
π π
− 2 , 2 − {0}
π
0, π −
2
y = cosec x
y = sec x
R – (–1, 1)
π π
− 2 , 2
( 0, π )
y = tan x y = cot x
10.
R – (–1,1)
R
R
Sign Convention
I
II
III
IV
sin x
+
+
–
–
cos x
+
–
–
+
tan x
+
–
+
–
cosec x
+
+
–
–
sec x
+
–
–
+
cot x
+
–
+
–
Get the Power of Visual Impact on your side
Log on to www.topperlearning.com
3
11.
Behavior of Trigonometric Functions in various Quadrants
I quadrant sin cos
tan
cot
sec
cosec