Trigonometric Identities 1 Sample Problems
page 1
Prove each of the following identities. 1. tan x sin x + cos x = sec x 2. 1 1 + tan x = tan x sin x cos x sin x cos2 x = sin3 x + 1 + sin cos = 2 cos 8. 1 2 cos2 x = tan2 x 1 tan2 x + 1 cos x 1 sin x 2 cos2 x
9. sec x + tan x = 10. sin4 x 11. (sin x
3. sin x 4. cos 1 + sin
cos4 x = 1
cos x)2 + (sin x + cos x)2 = 2
cos x 5. 1 sin x sin4 x 6. sin2 x 7. 1
cos x = 2 tan x 1 + sin x
sin2 x + 4 sin x + 3 3 + sin x 12. = 2x cos 1 sin x 13. cos x 1 sin x tan x = sec x 1 + sin x cos2 x
cos4 x =1 cos2 x
cos x sin x = cos x 1 + sin x
14. tan2 x + 1 + tan x sec x =
Practice Problems
Prove each of the following identities. 1. tan x + 2. cos x 1 = 1 + sin x cos x 1 = 2 tan x sec x 1 + sin x 7. cot x 1 1 tan x = cot x + 1 1 + tan x sin x cos x
1
1 sin x
sin3 x + cos3 x 8. =1 sin x + cos x 9. 10. 1 + sin x 1 sin x
1 + tan2 x 1 3. = 1 tan2 x cos2 x sin2 x 4. tan2 x 5. 6. 1 sin2 x = tan2 x sin2 x
1 sin x = 4 tan x sec x 1 + sin x
tan x + tan y = tan x tan y cot x + cot y tan x) (cos x cot x) = (sin x 1) (cos x 1)
cos x sin x + = 2 csc x sin x 1 cos x
11. (sin x 12.
sec x 1 1 cos x = sec x + 1 1 + cos x
1 + tan x cos x + sin x = 1 tan x cos x sin x
Last revised: March 16, 2011
c copyright Hidegkuti, Powell, 2009
Lecture Notes
Trigonometric Identities 1 Sample Problems - Solutions
page 2
Prove each of the following identities. 1. tan x sin x + cos x = sec x Solution: We will only use the fact that sin2 x + cos2 x = 1 for all values of x. LHS = tan x sin x + cos x = sin2 x sin x sin x + cos x = + cos x cos x cos x sin2 x cos2 x sin2 x + cos2 x 1 = + = = = RHS cos x cos x cos x cos x
2.
1 1 + tan x = tan x sin x cos x Solution: We will only use the fact that sin2 x + cos2 x = 1 for all values of x. LHS = 1 cos x sin x cos2 x + sin2 x 1 + tan x = + = = = RHS tan x sin x cos x sin x cos x sin x cos x
3. sin x sin x cos2 x =