Introduction: Cell membranes contain many different types of molecules which have different roles in the overall structure of the membrane. Phospholipids form a bilayer, which is the basic structure of the membrane. Their non-polar tails form a barrier to most water soluble substances. Membrane proteins serves as channels for transport of metabolites, some act as enzymes or carriers, while some are receptors. Lastly carbohydrate molecules of the membrane are relatively short-chain polysaccharides, which has multiple functions, for example, cell-cell recognition and acting as receptor sites for chemical signals.
The plasma membrane is a permeable membrane. An important role of the plasma membrane is to maintain the integrity of the cell, holding the cell contents together. Membrane permeability is a quality of the cell’s plasma membrane which allows certain substances to pass while forming a barrier against others, controlling exchanges between the cell inner and outer environment. Substances passed inside include for instance, water, respiratory gases like oxygen and carbon dioxide, nutrients such as glucose and essential ions. On the other hand, waste products can be expelled and components required to assemble cell walls can be secreted out through the membrane.
Because of the permeability of the plasma membrane, cells can extract the amino acids, fatty acids, sugars and vitamins need to carry out its daily functions. The movement across the plasma membrane of living cells is continuous and sustains the cells.
Beetroot is a vegetable that contains a rich source of potent antioxidants and nutrients which is important for cardiovascular health. Betacyanin, a red pigment, can be obtained in the vacuole of beet root cells, and is commonly used industrially as red food colourants or ink. In exploring the permeability of a beetroot membrane which contains a coloured