Contrary to its name, biotechnology is not a single technology. Rather it is a group of technologies that share two (common) characteristics -- working with living cells and their molecules and having a wide range of practice uses that can improve our lives.
Biotechnology can be broadly defined as "using organisms or their products for commercial purposes." As such, (traditional) biotechnology has been practices since he beginning of records history. (It has been used to:) bake bread, brew alcoholic beverages, and breed food crops or domestic animals (2). But recent developments in molecular biology have given biotechnology new meaning, new prominence, and new potential. It is (modern) biotechnology that has captured the attention of the public. Modern biotechnology can have a dramatic effect on the world economy and society (3).
One example of modern biotechnology is genetic engineering. Genetic engineering is the process of transferring individual genes between organisms or modifying the genes in an organism to remove or add a desired trait or characteristic. Examples of genetic engineering are described later in this document. Through genetic engineering, genetically modified crops or organisms are formed. These GM crops or GMOs are used to produce biotech-derived foods. It is this specific type of modern biotechnology, genetic engineering, that seems to generate the most attention and concern by consumers and consumer groups. What is interesting is that modern biotechnology is far more precise than traditional forms of biotechnology and so is viewed by some as being far safer.)
How does modern biotechnology work?
All organisms are made up of cells that are programmed by the same basic genetic material, called DNA (deoxyribonucleic acid). Each unit of DNA is made up of a combination of the following nucleotides -- adenine (A), guanine (G), thymine (T), and cytosine (D) -- as well as a sugar and a phosphate. These