Results
Mass(kg) | Radius(m) | Velocity(m/s) | CentripetalForce[Calculation](kg. m/s2) | CentripetalForce[Measure](kg. m/s2) | StandardDerivation(%) | 0.02406 | 0.0900 | 2.023 | 1.094 | 0.7349 | 32.8 | 0.02406 | 0.0900 | 2.584 | 1.785 | 1.446 | 19.0 | 0.02406 | 0.0900 | 3.153 | 2.658 | 2.351 | 11.4 | 0.02406 | 0.0900 | 3.702 | 3.662 | 3.374 | 7.86 | 0.02406 | 0.0900 | 4.238 | 4.801 | 4.525 | 5.75 |
Force versus Mass
Mass(kg) | Radius(m) | Velocity(m/s) | CentripetalForce[Calculation](kg. m/s2) | CentripetalForce[Measure](kg. m/s2) | StandardDerivation(%) | 0.0109 | 0.0900 | 3.86 | 1.805 | 1.519 | 15.8 | 0.0225 | 0.0900 | 3.86 | 3.725 | 3.825 | 2.68 | 0.0437 | 0.0900 | 3.86 | 7.235 | 7.531 | 4.09 | 0.0672 | 0.0900 | 3.86 | 11.13 | 11.615 | 4.36 |
Force versus 1/Radius Mass(kg) | Radius(m) | Velocity(m/s) | CentripetalForce[Calculation](kg. m/s2) | CentripetalForce[Measure](kg. m/s2) | StandardDerivation(%) | 0.0437 | 0.0900 | 3.86 | 7.235 | 6.879 | 4.92 | 0.0437 | 0.0800 | 3.86 | 8.130 | 8.253 | 1.51 | 0.0437 | 0.0700 | 3.86 | 9.301 | 9.145 | 1.67 | 0.0437 | 0.0600 | 3.86 | 10.852 | 10.118 | 6.76 |
Interpreting data
Based on the graph plotted, we can know that : * F (centripetal force) is directly proportional to v2 (velocity2) * F (centripetal force) is directly proportional to m (Mass) * F (centripetal force) is inversely proportional to R (Radius)
And so, it is proved that the centripetal force of the uniform circular motion ; F=mv2R Discussion
* As for the first experiment ( Force versus velocity²), due to some technical problem all the data that had been obtained from the experiment couldn’t be saved thus all the data are taken with approvement from our friend , Gary Tan ( General Physics and Experiment (I) [PHY 1011-09-00] ).
* According to the Force versus velocity²), graph , as the