Chi-square is a statistical test commonly used to compare observed data with data we would expect to obtain according to a specific hypothesis. For example, if, according to Mendel's laws, you expected 10 of 20 offspring from a cross to be male and the actual observed number was 8 males, then you might want to know about the "goodness to fit" between the observed and expected. Were the deviations (differences between observed and expected) the result of chance, or were they due to other factors. How much deviation can occur before you, the investigator, must conclude that something other than chance is at work, causing the observed to differ from the expected. The chi-square test is always testing what scientists call the null hypothesis, which states that there is no significant difference between the expected and observed result.
The formula for calculating chi-square ( [pic]2) is:
[pic]2= [pic](o-e)2/e
That is, chi-square is the sum of the squared difference between observed (o) and the expected (e) data (or the deviation, d), divided by the expected data in all possible categories.
For example, suppose that a cross between two pea plants yields a population of 880 plants, 639 with green seeds and 241 with yellow seeds. You are asked to propose the genotypes of the parents. Your hypothesis is that the allele for green is dominant to the allele for yellow and that the parent plants were both heterozygous for this trait. If your hypothesis is true, then the predicted ratio of offspring from this cross would be 3:1 (based on Mendel's laws) as predicted from the results of the Punnett square (Figure B. 1).
Figure B.1 - Punnett Square. Predicted offspring from cross between green and yellow-seeded plants. Green (G) is dominant (3/4 green; 1/4 yellow).
To calculate [pic]2 , first determine the number expected in each category. If the ratio is 3:1 and the total number of observed individuals is 880, then the expected numerical