CHEM 126/Section 01
Dates of Experimentation: 10/12/10; 10/19/10
Title: Studying the Rate of Reaction of Potassium Permanganate and Oxalic Acid
Abstract:
The purpose of this experiment was to determine the reaction order and write a rate equation with respect to changes in permanganate ion and oxalic acid concentrations and to examine the effect temperature has on the rate of the reaction 1. In part one, the reactants potassium permanganate (KMnO4) and oxalic acid (H2C2O4), three determinations were performed, each with different initial concentrations of the reactants. Each initial concentration resulted in a unique reaction rate; these rates were then examined using the method of initial rates to determine the order of the reaction with respect to both KMnO4 and H2C2O4. The rate constant (k), was then calculated, and the rate equation for the reaction written1. In part two; determinations were done at varying temperatures while keeping the initial concentrations for each reactant stayed constant to prove that a change in temperature results in a change of the reaction rate1.
Introduction:
Chemical reactions occur when reactant ions or molecules collide with enough energy to break and form bonds; referred to as kinetics1. The rate is the velocity, or how quickly the reaction proceeds. Rates can be altered in a variety of ways; the increase of reactant concentration and increase reactant temperature results in a rise in the amount of collisions and thus a faster rate1.
In part one of lab the initial concentrations of the reactants were varied to examine the effect on the reaction rate. The rate of reaction is affected differently by changes of concentrations in one reactant compared to another1. Changes in concentrations of individual reactants and the effect on the rate can be expressed mathematically through the rate equation (1): rate= k[H2C2O4]x [KMnO4]y (1)
In this equation, k is the rate constant
References: Michael Stranz, Signature Labs Series, Cengage Learning: Mason, Ohio, 2008; pgs. 23-32.