Abstract
The purpose of this paper is to show how memory is used in executing programs and its critical support for applications. C++ is a general purpose programming language that runs programs using memory management. Two operating system environments are commonly used in compiling, building and executing C++ applications. These are the windows and UNIX / Linux (or some UNIX / Linux derivative) operating system. In this paper we will explore the implementation of memory management, processes and threads.
Memory Management
What is a Memory Model?
A memory model allows a compiler to perform many important optimizations. Even simple compiler optimizations like loop fusion move statements in the program can influence the order of read and write operations of potentially shared variables. Changes in the ordering of reads and writes can cause race conditions. Without a memory model, a compiler is not allowed to apply such optimizations to multi-threaded programs in general, or only in special cases.
Modern programming languages like Java therefore implement a memory model. The memory model specifies synchronization barriers that are established via special, well-defined synchronization operations such as acquiring a lock by entering a synchronized block or method. The memory model stipulates that changes to the values of shared variables only need to be made visible to other threads when such a synchronization barrier is reached. Moreover, the entire notion of a race condition is entirely defined over the order of operations with respect to these memory barriers.
These semantics then give optimizing compilers a higher degree of freedom when applying optimizations: the compiler needs to make sure only that the values of (potentially shared) variables at synchronization barriers are guaranteed to be the same in both the optimized and un-optimized code. In particular, reordering statements in a block of code that contains no synchronization barrier is