One of the simplest types of closed circulatory systems is found in annelids such as the earthworm. Earthworms have two main blood vessels -- a dorsal and a ventral vessel -- which carry blood towards the head or the tail, respectively. Blood is moved along the dorsal vessel by waves of contraction in the wall of the vessel. These contractible waves are called 'peristalsis.' In the anterior region of the worm, there are five pairs of vessels, which we loosely term "hearts," that connect the dorsal and the ventral vessels. These connecting vessels function as rudimentary hearts and force the blood into the ventral vessel. Since the outer covering (the epidermis) of the earthworm is so thin and is constantly moist, there is ample opportunity for exchange of gases, making this relatively inefficient system possible. There are also special organs in the earthworm for the removal of nitrogenous wastes. Still, blood can flow backward and the system is only slightly more efficient than the open system of insects.
As we come to the vertebrates, we begin to find real efficiencies with the closed system. Fish possess one of the simplest types of true heart. A fish's heart is a two-chambered organ composed of one atrium and one ventricle. The heart has muscular walls and a valve between its chambers. Blood is pumped from the heart to the gills, where it receives oxygen and gets rid of carbon dioxide. Blood then moves on to the organs of the body, where nutrients, gases, and wastes are exchanged. However, there is no division of the