Perhaps the most conclusive (and certainly among the most carefully examined) piece of evidence for the Big Bang is the existence of an isotropic radiation bath that permeates the entire Universe known as the "cosmic microwave background" (CMB). The word "isotropic" means the same in all directions; the degree of anisotropy of the CMB is about one part in a thousand. In 1965, two young radio astronomers, Arno Penzias and Robert Wilson, almost accidentally discovered the CMB using a small, well-calibrated horn antenna. It was soon determined that the radiation was diffuse, emanated unifromly from all directions in the sky, and had a temperature of approximately 2.7 Kelvin (ie 2.7 degrees above absolute zero). Initially, they could find no satisfactory explanation for their observations, and considered the possibility that their signal may have been due to some undetermined systematic noise. They even considered the possibility that it was due to "a white dielectric substance" (ie pigeon droppings) in their horn!
• However, it soon came to their attention through Robert Dicke and Jim Peebles of Princeton that this background radiation had in fact been predicted years earlier by George Gamow as a relic of the evolution of the early Universe. This background of microwaves was in fact the cooled remnant of the primeval fireball - an echo of the Big Bang.
• If the universe was once very hot and dense, the photons and baryons would have formed a plasma, ie a gas of ionized matter coupled to the radiation through the constant scattering of photons off ions and electrons. As the universe expanded and cooled there came a point when the radiation (photons) decoupled from the matter - this happened about a few hundred thousand years after the Big Bang. That radiation cooled and is now at 2.7 Kelvin. The fact that the spectrum (see figure) of the radiation is almost exactly that of a "black body" (a physicists way of describing a