(Module1: Special Theory of Relativity)
1. Describe the Michelson Morley experiment and discuss the importance of its negative result. 2. Calculate the fringe shift in Michelson-Morley experiment. Given that: [pic], [pic], [pic], and [pic]. 3. State the fundamental postulates of Einstein special theory of relativity and deduce from them the Lorentz Transformation Equations . 4. Explain relativistic length contraction and time dilation in special theory of relativity? What are proper length and proper time interval? 5. A rod has length 100 cm. When the rod is in a satellite moving with velocity 0.9 c relative to the laboratory, what is the length of the rod as measured by an observer (i) in the satellite, and (ii) in the laboratory?. 6. A clock keeps correct time. With what speed should it be moved relative to an observer so that it may appear to lose 4 minutes in 24 hours? 7. In the laboratory the ‘life time’ of a particle moving with speed 2.8x108m/s, is found to be 2.5x10-7 sec. Calculate the proper life time of the particle. 8. Derive relativistic law of addition of velocities and prove that the velocity of light is the same in all inertial frame irrespective of their relative speed. 9. Two particles come towards each other with speed 0.9c with respect to laboratory. Calculate their relative speeds.
10. Rockets A and B are observed from the earth to be traveling with velocities 0.8c and 0.7 c along the same line in the same direction. What is the velocity of B as seen by an observer on A?
11. Show that the relativistic invariance laws of conservation of momentum leads to the concept of variation of mass with speed and mass energy equivalence.
12. A proton of rest mass [pic] is moving with a velocity of 0.9c. Calculate its mass and momentum.
TUTORIAL SHEET: 1 (Module1: Special Theory of Relativity) .
13. The speed of an electron is doubled from 0.2 c to 0.4 c. By what ratio does its momentum increase?
14. A