Data Processing is the term generally used to describe what was done by large mainframe computers from the late 1940's until the early 1980's (and which continues to be done in most large organizations to a greater or lesser extent even today): large volumes of raw transaction data fed into programs that update a master file, with fixed-format reports written to paper.
Number System
A numeral system (or system of numeration) is a writing system for expressing numbers, that is, a mathematical notation for representingnumbers of a given set, using digits or other symbols in a consistent manner. It can be seen as the context that allows the symbols "11" to be interpreted as the binary symbol for three, the decimal symbol for eleven, or a symbol for other numbers in different bases.
Equivalent Numbers in Decimal, Binary and Hexadecimal Notation:
Decimal Binary Hexadecimal
0 00000000 00
1 00000001 01
2 00000010 02
3 00000011 03
4 00000100 04
5 00000101 05
6 00000110 06
7 00000111 07
8 00001000 08
9 00001001 09
10 00001010 0A
11 00001011 0B
12 00001100 0C
13 00001101 0D
14 00001110 0E
15 00001111 0F
16 00010000 10
17 00010001 11
31 00011111 1F
32 00100000 20
63 00111111 3F
64 01000000 40
65 01000001 41
127 01111111 7F
128 10000000 80
129 10000001 81
255 11111111 FF
256 0000000100000000 0100
32767 0111111111111111 7FFF
32768 1000000000000000 8000
65535 1111111111111111 FFFF
Decimal and Binary Numbers
When we write decimal (base 10) numbers, we use a positional notation system. Each digit is multiplied by an appropriate power of 10 depending on its position in the number:
For example:
843 = 8 x 102 + 4 x 101 + 3 x 100
= 8 x 100 + 4 x 10 + 3 x 1
= 800 + 40 + 3
For whole numbers, the rightmost digit position is the one’s position (100 = 1). The numeral in