In distillation saltwater is heated in one container to make the water evaporate, leaving the salt behind. The desalinated vapor is then condensed to form water in a separate container. Although long known, distillation has found limited application in water supply because of the fuel costs involved in converting saltwater to vapor. Representative of the early attempts in this direction were the solar distillation methods employed (c.49 B.C.) by the legions of Julius Caesar for using water from the Mediterranean. Modern technological advances led to the development of more efficient distillation units using solar energy; however, since these units have small capacities, their utility is restricted.
Distillation plants having high capacities and using combustible fuels employ various devices to conserve heat. In the most common system a vacuum is applied to reduce the boiling point of the water, or a spray or thin film of water is exposed to high heat, causing flash evaporation; the water is flashed repeatedly, yielding fresh distilled water. This multistage flash distillation method is used in more than 2,000 desalination plants, including one in Saudi Arabia that produces 250 million gallons of freshwater per day.
Another method of desalination is by electrodialysis. When salt dissolves in water, it splits up into charged particles called ions. Placed in a container with a negative electrode at one end and a positive electrode at the other, the ions are filtered by the membranes as they are attracted toward the electrodes; they become trapped between semipermeable membranes, leaving outside the membranes a supply of desalinated water that can be tapped. The first