Preview

Determination Of Water In A Hydrate Lab Report

Good Essays
Open Document
Open Document
695 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Determination Of Water In A Hydrate Lab Report
Percent Water in a Hydrate
PURPOSE
To determine the percent water in a hydrate sample.
INTRODUCTION
Many substances contain water molecules as a part of their crystal structure. We call such solids hydrates, and we call the bound water the water of hydration.
A hydrate has a definite number of water molecules bound to each anhydrous salt unit. The formula of the hydrate copper(II) sulfate pentahydrate is
CuSO4 · 5 H2O
The dot indicates that the molecules of water are attached to the ions in CuSO4 by weak bonds.
We can drive off the water of hydration by heating the hydrate. If blue CuSO4 · 5 H2O is heated, the water of hydration is released as water vapor, and solid white anhydrous CuSO4 remains.
…show more content…
The reverse reaction of Equation 1 may also occur. Anhydrous CuSO4 is white, but upon exposure to air, the anhydrous salt absorbs water. This reaction produces blue CuSO4·5 H2O.
In some cases, compounds can actually dissolve in their water of hydration. Salts such as calcium chloride (CaCl2), calcium sulfate (CaSO4), and magnesium sulfate (MgSO4), can absorb so much water that they form solutions. These salts are said to be deliquescent. We often use anhydrous salts of this type as drying agents.
Some hydrated salts such as Na2SO4·10 H2O tend to lose water even without heating, just from exposure to dry air under normal conditions of temperature and pressure. Such salts are said to be efflorescent.
In this experiment, you will determine the mass of the salt before and after heating. The difference in mass between the hydrated and the dehydrated (anhydrous) salt is equal to the mass of water in the salt. From these data, you will calculate the formula of the hydrate and the percent by mass of water in a hydrated
…show more content…
Caution: Wear your safety goggles.
1. Support a clean crucible on a clay triangle and heat with an intense flame for 5 minutes. Handle the crucible with the crucible tongs for the rest of the experiment; do not use your fingers. Determine the mass of the cooled crucible.
2. Add at most 3.00 g of an unknown hydrated salt to the crucible and determine the mass of the salt and crucible.
3. Return the crucible with sample to the clay triangle.
4. At first, heat the sample slowly and then gradually intensify the heat. Do not allow the crucible to become red-hot. This can cause the anhydrous salt to decompose. Heat the sample for 15 minutes. Determine the mass of the anhydrous salt and crucible.
5. Reheat the sample for 5 more minutes. Again measure the mass. Continue this step until a constant mass is achieved.
6. Discard the anhydrous salt in the trash.

Data has been provided within the following data table for completion of this

You May Also Find These Documents Helpful

  • Satisfactory Essays

    Step 4. (NOTE: Always handle the crucible with clean tongs.) When the crucible and cover are cool, weigh them together to the nearest 0.001 g and record this mass on the REPORT FORM (4).…

    • 474 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    4) Heat the substance again until all the liquid is gone and you’re left with salt looking particles inside the beaker.…

    • 792 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    * Set crucible at angle in triangle held in ring on ring stand. Cover crucible loosely with crucible cover, and heat gently. Alum will melt, and water of hydration will evaporate.…

    • 1639 Words
    • 7 Pages
    Satisfactory Essays
  • Satisfactory Essays

    The first step in the experiment was to measure the mass of the crucible for trial 1. The second step was to add the Sodium bicarbonate using the scoopula into the crucible. The mass of the crucible and the Sodium bicarbonate was weighed. Next, the mass of just the Sodium bicarbonate was determined by subtracting the mass of the crucible and the substance by the mass of the crucible by itself. For all three trials, the mass of just the Sodium bicarbonate was exactly 2 grams.…

    • 187 Words
    • 1 Page
    Satisfactory Essays
  • Good Essays

    Chem Lab - Hydration

    • 1038 Words
    • 4 Pages

    In Part B, we heated 3 crucibles (and lids) for 5 minutes and then allowed to cool to room temperature. Once cooled, we recorded the individual masses. Then we measured 3 samples of an unknown hydrate (0.5 to 0.6 g) and placed one sample into the each of the crucibles and recorded their mass. Lids were labeled #1, #2, and #3 to identify each. Crucible #1 was placed above the burner flame and heated thoroughly for 4-8 minutes to drive off the all the water in the compound. After about 8 minutes we removed the crucible from…

    • 1038 Words
    • 4 Pages
    Good Essays
  • Good Essays

    As observed there was a color change and solid precipitate noted, of which the calcium and carbonate ions. The sodium and chlorine are cancelled, as spectator…

    • 1019 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Magnesium Ribbon Lab

    • 278 Words
    • 2 Pages

    Find the mass of a clean crucible and lid. USE THE SAME BALANCE DURING THE ENTIRE EXPERIMENT.…

    • 278 Words
    • 2 Pages
    Good Essays
  • Good Essays

    4. Weighed the evaporating dish with the balance. Recorded the mass on the data table…

    • 604 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Ionic Hydrate Lab Report

    • 465 Words
    • 2 Pages

    The process is to record the tare weight of a clean crucible. According to WiseGEEK, tare weight is the weight of an object (such as a jar, a cup, or, in this case, a crucible) when it is empty. You will add 2g of the copper sulfate hydrate crystals into the crucible, and then you weigh the crucible with the copper sulfate hydrate crystals and record the data. You then heat the crucible with the hydrate in it with a Bunsen burner for slightly more than 10 minutes, and then you weigh and record the data into your data table. After the weighing, it is reheated for five more minutes, and again weighed and recorded. If the masses are not within 0.05g of each other, you reheat it for another two minutes, weigh the masses again, and record the data. Keep reheating it until the weights are within 0.05g of each other. Then you will calculate and analyze…

    • 465 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Gainless Steel Lab

    • 685 Words
    • 3 Pages

    3. While the water is heating, measure the mass of the metal cylinder to the nearest 0.01 g and record the measurement.…

    • 685 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Chemical Formula Lab

    • 1437 Words
    • 6 Pages

    Obtain and wear goggles. 2. Measure and record the mass of a clean, dry crucible without cover. Obtain about 1 g of the unknown copper chloride hydrate and place it in the crucible. Use a spatula to break up any large pieces of the substance by pressing the pieces against the wall of the crucible. Measure and record the mass of the crucible with compound. 3. Set up a ring stand, ring, and clay triangle for heating the sample. Rest the crucible on the clay triangle. Set up a lab burner and ignite the burner away from the crucible. Adjust the burner to get a small flame. 4. Hold the burner in your hand and move the flame slowly back and forth underneath the crucible to gently heat the sample. Do not overheat the compound. Note the color change, from blue-green to brownish, as the water of hydration is driven out of the crystals. When the sample has turned brown, gently heat the crucible for two more minutes. 5. Remove and turn off the burner. Cover the crucible and allow the sample to cool for about ten minutes. 6. Remove the crucible cover and inspect your sample. If you see any blue-green crystals, reheat the sample until the crystals have turned brown. 7. Measure and record the mass of the cool crucible of your copper chloride sample. 8. Transfer the brown solid to a clean and empty 50 mL beaker. Rinse out the crucible with two 8 mL aliquots of distilled water and pour the water into the 50 mL beaker. Gently swirl the beaker to completely dissolve the solid. Note that the color of the solution is green as the copper ions are rehydrated. 9. Measure out about 20 cm of aluminum wire, coil the wire, and place the wire in the beaker of solution so that it is completely immersed in the copper chloride solution. Note that the reaction produces a gas, elemental copper is forming on the surface of the aluminum wire, and the color of the solution is fading. The reaction will take about 30 minutes to complete. 10. When the reaction is done, the solution will be colorless.…

    • 1437 Words
    • 6 Pages
    Good Essays
  • Good Essays

    Hydrate Lab

    • 500 Words
    • 2 Pages

    A hydrate is a substance that holds water in a certain ratio. As Hydrates are compounds with constant composition, we were able to easily determine this ratio by evaporating the water and then calculating a common ratio. We had Copper sulfate pentahydrous. In our experiment and on further calculations we observed that generally ten molecules of water combine with one molecule of…

    • 500 Words
    • 2 Pages
    Good Essays
  • Good Essays

    The mass percent of water was determined using the mass of water and dividing it by the total mass of the hydrate and then multiplying that answer by 100%. The number of moles of water in a hydrate was determined by taking the mass of the water released and dividing it by the molar mass of water. The number of moles of water and the number of moles of the hydrate was used to calculate the ratio of moles of water to moles of the sample. This ratio was then used to write the new and balanced equation of the dehydration process. The sample was then rehydrated to the original state and the percent of the hydrate recovered was calculated by using the mass of the rehydrated sample by the mass of the original hydrate and then multiplied by 100%.…

    • 823 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    Hydrate Composition

    • 1334 Words
    • 6 Pages

    Hydrates are chemical compounds that contain discrete water molecules as part of their crystalline structure. Water is bound in most hydrates in definite, stoichiometric proportions, and the number of water molecules bound per metal ion is often characteristic of a particular metal ion. Many hydrated salts can be transformed to the anhydrous (without water) compound by application of heat. In this experiment, we determine the empirical formula of copper (II) sulfate – CuSO4.…

    • 1334 Words
    • 6 Pages
    Powerful Essays
  • Better Essays

    Hydrate Lab

    • 970 Words
    • 4 Pages

    One is that when a hydrate is heated up, it will change colors indicating that there is a reaction occurring. Also, that the color change is a physical change since the anhydrous Copper (II) Sulfate could be hydrated again by adding water. When the water is added back to the compound, heat is released and it sizzles as it re-hydrates. Another thing I learned was that you could evaporate the water in a compound to make it an anhydrous compound. Lastly that the hydrate is chemically bound to the Copper (II) Sulfate, but it can be separated with…

    • 970 Words
    • 4 Pages
    Better Essays

Related Topics