Frame Relay is an example of a packet-switched technology.
CELL RELAY
Cell relay refers to a method of statistically multiplexing small fixed-length packets, called "cells", to transport data between computers or kinds of network equipment. It is an unreliable, connection-oriented packet switched data communications protocol. Cell relay transmission rates usually are between 56 kbit/s and several gigabits per second. ATM, a particularly popular form of cell relay, is most commonly used for home DSL connections, which often runs between 128 kbit/s and 1.544 Mbit/s (DS1), and for high-speed backbone connections (OC-3 and faster). Cell relay is an implementation of fast packetswitching technology that is used in connection-oriented broadband integrated services digital networks (B-ISDN, and its better-known supporting technology ATM) and connectionless IEEE 802.6 switched multi-megabit data service (SMDS). Cell relay is extremely reliable for transporting vital data. Switching devices give the precise method to cells as each endpoint address embedded in a cell. An example of cell relay is ATM, a prevalent form utilized to transfer a cell with a fixed size of 53 bytes. Cell relay systems break variable-length user packets into groups of fixed-length cells, that add addressing and verification information. Frame length is fixed in networking hardware, based on time delay and user packet-length considerations. One user data message may be segmented over many cells.
Frame Relay types: Variable-length packets Statistical multiplexing
Frame Relay often is described as a streamlined version of X.25, offering fewer of the robust capabilities, such as windowing and retransmission of last data that are offered in X.25.
Internationally, Frame Relay was standardized by the International Telecommunication Union-Telecommunications Standards Section (ITU-T). In the United States, Frame Relay is an American National Standards Institute (ANSI) standard.