In psychology, memory is the processes by which information is encoded, stored, and retrieved. Encoding allows information that is from the outside world to reach our senses in the forms of chemical and physical stimuli. In this first stage we must change the information so that we may put the memory into the encoding process. Storage is the second memory stage or process. This entails that we maintain information over periods of time. Finally the third process is the retrieval of information that we have stored. We must locate it and return it to our consciousness. Some retrieval attempts may be effortless due to the type of information.
STAGES OF MEMORY:
From an information processing perspective, there are three …show more content…
main stages in the formation and retrieval of memory:
• Encoding: or registration: receiving, processing and combining of received information
• Storage: creation of a permanent record of the encoded information
• Retrieval, recall or recollection: calling back the stored information in response to some cue for use in a process or activity
Working memory:
The working memory model.
In 1974 Baddeley and Hitch proposed a working memory model which replaced the concept of general short term memory with specific, active components. In this model, working memory consists of three basic stores: the central executive, the phonological loop and the visuo-spatial sketchpad. In 2000 this model was expanded with the multimodal episodic buffer.
The central executive essentially acts as attention. It channels information to the three component processes: the phonological loop, the visuo-spatial sketchpad, and the episodic buffer.
The phonological loop stores auditory information by silently rehearsing sounds or words in a continuous loop: the articulatory process (for example the repetition of a telephone number over and over again). A short list of data is easier to remember.
The visuospatial sketchpad stores visual and spatial information. It is engaged when performing spatial tasks (such as judging distances) or visual ones (such as counting the windows on a house or imagining images).
The episodic buffer is dedicated to linking information across domains to form integrated units of visual, spatial, and verbal information and chronological ordering (e.g., the memory of a story or a movie scene). The episodic buffer is also assumed to have links to long-term memory and semantical meaning.
The working memory model explains many practical observations, such as why it is easier to do two different tasks (one verbal and one visual) than two similar tasks (e.g., two visual), and the aforementioned word-length effect. However, the concept of a central executive as noted here has been criticised as inadequate and vague. Working memory is also the premise for what allows us to do everyday activities involving thought. It is the section of memory where we carry out thought processes and use them to learn and reason about topics.
Types of memory:
Researchers distinguish between recognition and recall memory. Recognition memory tasks require individuals to indicate whether they have encountered a stimulus (such as a picture or a word) before. Recall memory tasks require participants to retrieve previously learned information. For example, individuals might be asked to produce a series of actions they have seen before or to say a list of words they have heard before.
• Sensory memory Sensory memory corresponds approximately to the initial 200–500 milliseconds after an item is perceived. The ability to look at an item, and remember what it looked like with just a second of observation, or memorisation, is an example of sensory memory. With very short presentations, participants often report that they seem to "see" more than they can actually report. The first experiments exploring this form of sensory memory were conducted by George Sperling (1963) using the "partial report paradigm". Subjects were presented with a grid of 12 letters, arranged into three rows of four. After a brief presentation, subjects were then played either a high, medium or low tone, cuing them which of the rows to report. Based on these partial report experiments, Sperling was able to show that the capacity of sensory memory was approximately 12 items, but that it degraded very quickly (within a few hundred milliseconds). Because this form of memory degrades so quickly, participants would see the display, but be unable to report all of the items (12 in the "whole report" procedure) before they decayed. This type of memory cannot be prolonged via rehearsal.
There are many types of sensory memories. Iconic memory is a type of sensory memory that briefly stores an image which has been perceived for a small duration. Echoic memory is another type of sensory memory that briefly stores sounds which has been perceived for a small duration.
• Short-term memory Short-term memory allows recall for a period of several seconds to a minute without rehearsal. Its capacity is also very limited: George A. Miller (1956), when working at Bell Laboratories, conducted experiments showing that the store of short-term memory was 7±2 items (the title of his famous paper, "The magical number 7±2"). Modern estimates of the capacity of short-term memory are lower, typically of the order of 4–5 items, however, memory capacity can be increased through a process called chunking. For example, in recalling a ten-digit telephone number, a person could chunk the digits into three groups: first, the area code (such as 123), then a three-digit chunk (456) and lastly a four-digit chunk (7890). This method of remembering telephone numbers is far more effective than attempting to remember a string of 10 digits; this is because we are able to chunk the information into meaningful groups of numbers. This may be reflected in some countries in the tendency to display telephone numbers as several chunks of three numbers, with the final four-number group generally broken down into two groups of two.
• Long-term memory The storage in sensory memory and short-term memory generally have a strictly limited capacity and duration, which means that information is not retained indefinitely. By contrast, long-term memory can store much larger quantities of information for potentially unlimited duration (sometimes a whole life span). Its capacity is immeasurably large. For example, given a random seven-digit number we may remember it for only a few seconds before forgetting, suggesting it was stored in our short-term memory. On the other hand, we can remember telephone numbers for many years through repetition; this information is said to be stored in long-term memory.
While short-term memory encodes information acoustically, long-term memory encodes it semantically: Baddeley (1966) discovered that after 20 minutes, test subjects had the most difficulty recalling a collection of words that had similar meanings (e.g. big, large, great, huge) long-term. Another part of long-term memory is episodic memory "which attempts to capture information such as “what”, “when” and “where”. With episodic memory individuals are able to recall specific events such as birthday parties and weddings.
Short-term memory is supported by transient patterns of neuronal communication, dependent on regions of the frontal lobe (especially dorsolateral prefrontal cortex) and the parietal lobe. Long-term memories, on the other hand, are maintained by more stable and permanent changes in neural connections widely spread throughout the brain. The hippocampus is essential (for learning new information) to the consolidation of information from short-term to long-term memory, although it does not seem to store information itself. Without the hippocampus, new memories are unable to be stored into long-term memory, as learned from HM after removal of his hippocampus, and there will be a very short attention span. Furthermore, it may be involved in changing neural connections for a period of three months or more after the initial learning. One of the primary functions of sleep is thought to be improving consolidation of information, as several studies have demonstrated that memory depends on getting sufficient sleep between training and test. Additionally, data obtained from neuroimaging studies have shown activation patterns in the sleeping brain which mirror those recorded during the learning of tasks from the previous day, suggesting that new memories may be solidified through such rehearsal.
CLASSIFICATION OF MEMORY:
Classification by information type:
Topographic memory involves the ability to orient oneself in space, to recognize and follow an itinerary, or to recognize familiar places. Getting lost when traveling alone is an example of the failure of topographic memory. This is often reported among elderly patients who are evaluated for dementia. The disorder could be caused by multiple impairments, including difficulties with perception, orientation, and memory.
Flashbulb memories are clear episodic memories of unique and highly emotional events. Remembering where you were or what you were doing when you first heard the news of President Kennedy’s assassination or about 9/11 are examples of flashbulb memories.
Anderson (1976) divides long-term memory into declarative (explicit) and procedural (implicit) memories.
• Declarative memory:
Declarative memory requires conscious recall, in that some conscious process must call back the information. It is sometimes called explicit memory, since it consists of information that is explicitly stored and retrieved.
Declarative memory can be further sub-divided into semantic memory, which concerns facts taken independent of context; and episodic memory, which concerns information specific to a particular context, such as a time and place.
Semantic memory allows the encoding of abstract knowledge about the world, such as "Paris is the capital of France". Episodic memory, on the other hand, is used for more personal memories, such as the sensations, emotions, and personal associations of a particular place or time. Autobiographical memory - memory for particular events within one's own life - is generally viewed as either equivalent to, or a subset of, episodic memory. Visual memory is part of memory preserving some characteristics of our senses pertaining to visual experience. One is able to place in memory information that resembles objects, places, animals or people in sort of a mental image. Visual memory can result in priming and it is assumed some kind of perceptual representational system underlies this phenomenon.
• Procedural memory:
In contrast, procedural memory (or implicit memory) is not based on the conscious recall of information, but on implicit learning. Procedural memory is primarily employed in learning motor skillsand should be considered a subset of implicit memory. It is revealed when one does better in a given task due only to repetition - no new explicit memories have been formed, but one isunconsciously accessing aspects of those previous experiences. Procedural …show more content…
memory involved in motor learning depends on the cerebellum and basal ganglia.
• Classification by temporal direction:
A further major way to distinguish different memory functions is whether the content to be remembered is in the past, retrospective memory, or whether the content is to be remembered in the future, prospective memory. Thus, retrospective memory as a category includes semantic, episodic and autobiographical memory. In contrast, prospective memory is memory for future intentions, or remembering to remember (Winograd, 1988). Prospective memory can be further broken down into event- and time-based prospective remembering. Time-based prospective memories are triggered by a time-cue, such as going to the doctor (action) at 4pm (cue). Event-based prospective memories are intentions triggered by cues, such as remembering to post a letter (action) after seeing a mailbox (cue). Cues do not need to be related to the action (as the mailbox/letter example), and lists, sticky-notes, knotted handkerchiefs, or string around the finger all exemplify cues that people use as strategies to enhance prospective memory.
Memory Disorders:
Much of the current knowledge of memory has come from studying memory disorders, particularly amnesia. Loss of memory is known as amnesia.
• Amnesia can result from extensive damage to:
(a) the regions of the medial temporal lobe, such as the hippocampus, dentate gyrus, subiculum, amygdala, the parahippocampal, entorhinal, and perirhinal cortices or the,
(b) midline diencephalic region, specifically the dorsomedial nucleus of the thalamus and the mammillary bodies of the hypothalamus.
There are many sorts of amnesia, and by studying their different forms, it has become possible to observe apparent defects in individual sub-systems of the brain's memory systems, and thus hypothesize their function in the normally working brain. Other neurological disorders such as Alzheimer's disease and Parkinson's disease can also affect memory and cognition.
• Hyperthymesia, or hyperthymesic syndrome, is a disorder which affects an individual's autobiographical memory, essentially meaning that they cannot forget small details that otherwise would not be stored.
• Korsakoff's syndrome, also known as Korsakoff's psychosis, amnesic-confabulatory syndrome, is an organic brain disease that adversely affects memory.
• A common temporary failure of word retrieval from memory is the tip-of-the-tongue phenomenon.
• Sufferers of Anomic aphasia (also called Nominal aphasia or Anomia), however, do experience the tip-of-the-tongue phenomenon on an ongoing basis due to damage to the frontal and parietal lobes of the brain
Improving memory:
A UCLA research study published in the June 2006 issue of the American Journal of Geriatric Psychiatry found that people can improve cognitive function and brain efficiency through simple lifestyle changes such as incorporating memory exercises, healthy eating, physical fitness and stress reduction into their daily lives. This study examined 17 subjects, (average age 53) with normal memory performance. Eight subjects were asked to follow a "brain healthy" diet, relaxation, physical, and mental exercise (brain teasers and verbal memory training techniques). After 14 days, they showed greater word fluency (not memory) compared to their baseline performance. No long term follow up was conducted, it is therefore unclear if this intervention has lasting effects on memory.
There are a loosely associated group of mnemonic principles and techniques that can be used to vastly improve memory known as the Art of memory.
The International Longevity Center released in 2001 a report which includes in pages 14–16 recommendations for keeping the mind in good functionality until advanced age. Some of the recommendations are to stay intellectually active through learning, training or reading, to keep physically active so to promote blood circulation to the brain, to socialize, to reduce stress, to keep sleep time regular, to avoid depression or emotional instability and to observe good nutrition.
Levels of processing:
Craik and Lockhart (1972) proposed that it is the method and depth of processing that affects how an experience is stored in memory, rather than rehearsal.
Organization - Mandler (1967) gave participants a pack of word cards and asked them to sort them into any number of piles using any system of categorisation they liked. When they were later asked to recall as many of the words as they could, those who used more categories remembered more words. This study suggested that the organization of memory is one of its central aspects (Mandler, 2011).
Distinctiveness - Eysenck and Eysenck (1980) asked participants to say words in a distinctive way, e.g. spell the words out loud. Such participants recalled the words better than those who simply read them off a list.
Effort - Tyler et al. (1979) had participants solve a series of anagrams, some easy (FAHTER) and some difficult (HREFAT). The participants recalled the difficult anagrams better, presumably because they put more effort into them.
Elaboration - Palmere et al. (1983) gave participants descriptive paragraphs of a fictitious African nation. There were some short paragraphs and some with extra sentences elaborating the main idea. Recall was higher for the ideas in the elaborated
paragraphs.