Skin Evolution Essay
Human skin pigmentation is the product of two clines produced by natural selection to adjust levels of constitutive pigmentation to levels of UV radiation (UVR). One cline was generated by high UVR near the equator and led to the evolution of dark, photo protective, melanin-rich pigmentation. The other was produced by the requirement for UVB photons to sustain cutaneous photosynthesis of vitamin D3 in low-UVB environments, and resulted in the evolution of pigmented skin. As hominids dispersed outside of the tropics, they experienced different intensities and seasonal mixtures of UVA and UVB. Extreme UVA throughout the year and two equinoctial peaks of UVB prevail within the tropics. Under these conditions, the primary selective pressure was to protect foliate by maintaining dark pigmentation. Photolysis of foliate and its main serum form of 5-methylhydrofolate is caused by UVR and by reactive oxygen species generated by UVA. Competition for foliate between the needs for cell division, DNA repair, and melanogenesis is severe under stressful, high-UVR conditions and is exacerbated by dietary insufficiency. Outside of tropical latitudes, UVB levels are generally low and peak only once during the year. The populations exhibiting maximally pigmented skin are those inhabiting environments with the lowest annual and summer peak levels of UVB. Development of facultative pigmentation (tanning) was important to populations settling between roughly 23° and 46° , where levels of UVB varied strongly according to season. Depigmented and tannable skin evolved numerous times in hominin evolution via independent genetic pathways under positive selection.
Variation in skin color is the most noticeable of human polymorphisms. As visually dominant mammals, we readily notice differences in skin color in each other. As primates who uniquely use language to create categories, we readily give names to these differences. Since the mid-18th