Research Project
Aaron Aherne-Williams
Fibre-Optic Telecommunications Systems:
Fibre-optic telecommunications is simply a method of transmitting information from one place to another extremely fast. This is done by shooting pulses of light through an optical fibre. Creating the optical signal involving the use of a transmitter, relaying the signal along the fiber, ensuring that the signal does not become too distorted or weak, receiving the optical signal, and converting it into an electrical signal. An optic-fibre is a small fibre no thicker than a human hair, either made of glass or plastic that is transparent and flexible. The light inside the fibre-optic cable forms an electromagnetic carrier wave that is modulated to carry information. Fibre-optic telecommunications offers the longest and highest bandwidth (data transfer) of any other form of communication. The availability of fibre-optic technology has replaced a lot of the copper wire communications in core networks in developed countries. The modern day Fibre-optic cable was first developed by Gerhard Bernsee of Schott Glass in Germany in 1973. After this in the early 90’s a development of the photonic crystal-fibre these are much better because they have much higher power than the early glass fibre and also their wavelength-dependent can be manipulated to provide better performance. These were first available in 2000 and with this technology the first Fibre-Optic Telecommunications System was developed. Fibre optic telecommunications have three main uses the internet; optic fibres allow for an extremely fast bandwidth this is normally used by big companies and the government, digital television; optic fibre allows for a perfect quality at all times that never cuts out which is crystal clear and never cuts out, and finally telephones; Once again used for perfect quality between long distances it was the original use for fibre optic telecommunication. ‘The glass in optical fibres is