After studying this Unit, you will be able to • define the biomolecules like carbohydrates, proteins and nucleic acids; • classify carbohydrates, proteins, nucleic acids and vitamins on the basis of their structures; • explain the difference between DNA and RNA; • appreciate the role of biomolecules in biosystem.
Biomolecules
“It is the harmonious and synchronous progress of chemical reactions in body which leads to life”.
14
Unit
A living system grows, sustains and reproduces itself. The most amazing thing about a living system is that it is composed of non-living atoms and molecules. The pursuit of knowledge of what goes on chemically within a living system falls in the domain of biochemistry. Living systems are made up of various complex biomolecules like carbohydrates, proteins, nucleic acids, lipids, etc. Proteins and carbohydrates are essential constituents of our food. These biomolecules interact with each other and constitute the molecular logic of life processes. In addition, some simple molecules like vitamins and mineral salts also play an important role in the functions of organisms. Structures and functions of some of these biomolecules are discussed in this Unit.
14.1 Carbohydrates
Carbohydrates are primarily produced by plants and form a very large group of naturally occurring organic compounds. Some common examples are cane sugar, glucose, starch, etc. Most of them have a general formula, Cx(H2O)y, and were considered as hydrates of carbon from where the name carbohydrate was derived. For example, the molecular formula of glucose (C6H12O6) fits into this general formula, C6(H2O)6. But all the compounds which fit into this formula may not be classified as carbohydrates. Acetic acid (CH3COOH) fits into this general formula, C2(H2O)2 but is not a carbohydrate. Similarly, rhamnose, C6H12O5 is a carbohydrate but does not fit in this definition. A large number of their reactions have shown that they contain specific