Abstract
The widespread availability of photo manipulation software has made it unprecedentedly easy to manipulate images for malicious purposes. Image splicing is one such form of tampering. In recent years, researchers have proposed various methods for detecting such splicing. In this paper, we present a novel method of detecting splicing in images, using discrepancies in motion blur. We use motion blur estimation through image gradients in order to detect inconsistencies between the spliced region and the rest of the image. We also develop a new measure to assist in inconsistent region segmentation in images that contain small amounts of motion blur. Experimental results show that our technique provides good segmentation of regions with inconsistent motion blur. We also provide quantitative comparisons with other existing blur-based techniques over a database of images. It is seen that our technique gives significantly better detection results.
Distortion is often considered as an unfavorable factor in most image analysis. However, it is undeniable that the distortion reflects the intrinsic property of the lens, especially, the extreme wide-angle lens, which has a significant distortion. In this paper, we discuss how explicitly employing the distortion cues can detect the forgery object in distortion image and make the following contributions: 1) a radial distortion projection model is adopted to simplify the traditional captured ray-based models, where the straight world line is projected into a great circle on the viewing sphere; 2) two bottom-up cues based on distortion constraint are provided to discriminate the authentication of the line in the image; 3) a fake saliency map is used to maximum fake detection density, and based on the fake saliency map, an energy function is provided to achieve the pixel-level forgery object via graph cut. Experimental results on simulated