"Fractal Geometry is not just a chapter of mathematics, but one that helps
Everyman to see the same old world differently". - Benoit Mandelbrot
The world of mathematics usually tends to be thought of as abstract. Complex and imaginary numbers, real numbers, logarithms, functions, some tangible and others imperceivable. But these abstract numbers, simply symbols that conjure an image, a quantity, in our mind, and complex equations, take on a new meaning with fractals - a concrete one. Fractals go from being very simple equations on a piece of paper to colorful, extraordinary images, and most of all, offer an explanation to things. The importance of fractal geometry is that it provides an answer, a comprehension, to nature, the world, and the universe. Fractals occur in swirls of scum on the surface of moving water, the jagged edges of mountains, ferns, tree trunks, and canyons. They can be used to model the growth of cities, detail medical procedures and parts of the human body, create amazing computer graphics, and compress digital images. Fractals are about us, and our existence, and they are present in every mathematical law that governs the universe. Thus, fractal geometry can be applied to a diverse palette of subjects in life, and science - the physical, the abstract, and the natural.
We were all astounded by the sudden revelation that the output of a very simple, two-line generating formula does not have to be a dry and cold abstraction. When the output was what is now called a fractal, no one called it artificial... Fractals suddenly broadened the realm in which understanding can be based on a plain physical basis. (McGuire, Foreword by Benoit Mandelbrot)
A fractal is a geometric shape that is complex and detailed at every level of magnification, as well as self-similar. Self-similarity is something looking the same over all ranges of scale, meaning a small portion of