In game theory, Nash equilibrium (named after John Forbes Nash, who proposed it) is a solution concept of a game involving two or more players, in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only his own strategy unilaterally. If each player has chosen a strategy and no player can benefit by changing his or her strategy while the other players keep theirs unchanged, then the current set of strategy choices and the corresponding payoffs constitute Nash equilibrium.
Stated simply, Amy and Phil are in Nash equilibrium if Amy is making the best decision she can, taking into account Phil's decision, and Phil is making the best decision he can, taking into account Amy's decision. Likewise, a group of players is in Nash equilibrium if each one is making the best decision that he or she can, taking into account the decisions of the others. However, Nash equilibrium does not necessarily mean the best payoff for all the players involved; in many cases, all the players might improve their payoffs if they could somehow agree on strategies different from the Nash equilibrium: e.g., competing businesses forming a cartel in order to increase their profits.
The prisoner's dilemma is a fundamental problem in game theory that demonstrates why two people might not cooperate even if it is in both their best interests to do so. It was originally framed by Merrill Flood and Melvin Dresher working at RAND in 1950. Albert W. Tucker formalized the game with prison sentence payoffs and gave it the "prisoner's dilemma" name (Poundstone, 1992).
A classic example of the prisoner's dilemma (PD) is presented as follows: Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and, having separated the prisoners, visit each of them to offer the same deal. If one testifies for the prosecution against the other (defects) and the other remains