Heat transfer, also known as heat flow, heat exchange, or simply heat, is the transfer of thermal energy from one region of matter or a physical system to another. When an object is at a different temperature from its surroundings, heat transfer occurs so that the body and the surroundings reach the same temperature at thermal equilibrium. Such spontaneous heat transfer always occurs from a region of high temperature to another region of lower temperature, as required by the second law of thermodynamics.
In engineering, energy transfer by heat between objects is classified as occurring by heat conduction, also called diffusion, of two objects in contact; fluid convection, which is the mixing of hot and cold fluid regions; or thermal radiation, the transmission of electromagnetic radiation described by black body theory. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer.
II. THREE MODES OF HEAT TRANSFER
1. Conduction
In heat transfer, conduction (or heat conduction) is the transfer of thermal energy between neighboring molecules in a substance due to a temperature gradient. Heat transfer always goes from a region of higher temperature to a region of lower temperature, and acts to equalize the temperature differences. Conduction takes place in all forms of matter, viz. solids, liquids, gases and plasmas, but does not require any bulk motion of matter. In solids, it is due to the combination of vibrations of the molecules in a lattice or phonons with the energy transported by free electrons. In gases and liquids, conduction is due to the collisions and diffusion of the molecules during their random motion.
Steady state conduction is a form of conduction that happens when the temperature difference driving the conduction is constant, so that after an equilibration time, the spatial distribution of temperatures in the conducting object does not change any further. In