ABSTRACT
The purpose of this report is to find out the effect of change in the Temperature, PH, boiling, concentration in peroxidase activity. Peroxidase is an enzyme that converts toxic hydrogen peroxide (H2O2) into water and another harmless compound. In this experiment we use, turnips and horseradish roots which are rich in the peroxidase to study the activity of this enzyme. The activity of peroxidase with change in temperature was highest at 320 Celsius and lowest at 40C. The activity of peroxidase was highest at a pH of 7, while it was lowest at pH of 9.Peroxidase activity was very low and constant with boiled extract, while the activity was moderate and constant with normal extracts. Increase in the concentration of the enzyme, peroxidase increases rate of reaction i.e. peroxidase activity was highest with 2.0ml peroxidase extract, and lowest with 0.5ml peroxidase extract. In conclusion, increase in pH and boiling decrease peroxidase activity, while increase in temperature and concentration of enzyme, peroxidase increase peroxidase activity.
INTRODUCTION
Enzymes are proteins that catalyze biological reactions. In biological entities, chemical reaction is involved in most of their metabolic processes. Chemical reactions have to overcome an activation energy for it to proceed. However, the higher the activation energy, the more energy is needed for that reaction to proceed. The body rather than produce that extra energy, opts to reduce the activation energy barrier the reactants have to overcome. One main reason they opt for this choice is that the extra energy needed for the reaction would be either too expensive for the body i.e. its ATP consumption or would be detrimental to the body if the energy is in form of heat. So enzymes are very important biological catalyst. Life would not exist for more complex multicellular organisms hadn’t it been for the role enzymes play
Cited: Dolphin, Warren D. "Determining the Properties of an Enzyme." Biological Investigations: Form, Function, Diversity & Process. 9th ed. Boston: McGraw-Hill Higher Education, 2008. 78-83. Print.