5/27/11
1:41 PM
Page 23
Home
Quit
Lesson 1.4 Exercises, pages 48–53
A
3. Write a geometric series for each geometric sequence.
a) 1, 4, 16, 64, 256, . . .
1 ؉ 4 ؉ 16 ؉ 64 ؉ 256 ؉ . . .
b) 20, -10, 5, -2.5, 1.25, . . .
20 ؊ 10 ؉ 5 ؊ 2.5 ؉ 1.25 ؊ . . .
4. Which series appear to be geometric? If the series could be geometric,
determine S5.
a) 2 + 4 + 8 + 16 + 32 + . . .
The series could be geometric.
S5 is: 2 ؉ 4 ؉ 8 ؉ 16 ؉ 32 26 ؍
c) 1 + 4 + 9 + 16 + 25 + . . .
The series is not geometric.
©P
DO NOT COPY.
b) 2 - 4 + 8 - 16 + 32 - . . .
The series could be geometric.
S5 is: 2 ؊ 4 ؉ 8 ؊ 16 ؉ 32 22 ؍
d) -3 + 9 - 27 + 81 - 243 + . . .
The series could be geometric.
S5 is: ؊3 ؉ 9 ؊ 27 ؉ 81 ؊ 243 381؊ ؍
1.4 Geometric Series—Solutions
23
01_ch01_pre-calculas11_wncp_tr.qxd
5/27/11
1:41 PM
Page 24
Home
Quit
5. Use the given data about each geometric series to determine the
indicated value.
a) t1 = 1, r = 0.3; determine S8
Use: Sn ؍
t1(1 ؊ rn)
,r Z 1
1؊r
Use: Sn ؍
t1(1 ؊ rn)
,r Z 1
1؊r
Substitute:
Substitute: n ,8 ؍t1 ,1 ؍r 3.0 ؍
S8 ؍
1
3
b) t1 = 4 , r = 2 ; determine S4
3
4
n ,4 ؍t1 , ؍r ؍
1(1 ؊ 0.38)
1 ؊ 0.3
S8 Џ 1.428
S4 ؍
3
1 4 a1 ؊ a b b
4
2
1؊
S4 ؍
1
2
1
2
45
, or approximately 1.406
32
B
6. Determine S6 for each geometric series.
a) 2 + 10 + 50 + . . .
b) 80 - 40 + 20 - . . .
؊ 40
10
5؍
2 n t1(1 ؊ r )
Use: Sn ؍
,r Z 1
1؊r
80 t1(1 ؊ r )
Use: Sn ؍
,r Z 1
1؊r
Substitute: n ,6 ؍t1 ,2 ؍r 5 ؍
Substitute: n ,6 ؍t1 ,08 ؍r 5.0؊ ؍
t1 2 ؍and r is:
S6 ؍
2(1 ؊ 56)
1؊5
t1 08 ؍and r is:
S6 ؍
S6 2187 ؍
5.0 ؊ ؍
n
80(1 ؊ (؊0.5)6 )
1 ؊ (؊0.5)
S6 5.25 ؍
7. Determine S10 for each geometric series. Give the answers to
3 decimal places.
1
1
1
a) 0.1 +