Contents lists available at SciVerse ScienceDirect
Carbohydrate Polymers journal homepage: www.elsevier.com/locate/carbpol
In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material
D. Archana a , Brijesh K. Singh a , Joydeep Dutta b , P.K. Dutta a,∗ a b
Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India
Department of Humanities and Applied Sciences, Institute of Engineering & Technology, ITM University, Uparwara, Raipur 493661, India
a r t i c l e
i n f o
Article history:
Received 13 October 2012
Received in revised form 6 March 2013
Accepted 7 March 2013
Available online xxx
Keywords:
Chitosan
PVP
Titanium dioxide
In vivo
Wound healing applications
a b s t r a c t
In our present study, the blends of chitosan, poly(N-vinylpyrrolidone) (PVP) and titanium dioxide (TiO2 ) were investigated by Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis
(TGA). The size distribution of the TiO2 nanoparticles was measured using transmission electron microscope and scanning electron microscope. The studies on the mechanical properties of composite material indicate that the addition of TiO2 nanoparticles increases its strength. The prepared nanocomposite dressing has excellent antimicrobial efficacy and good biocompatibility against NIH3T3 and L929 fibroblast cells. Compared to conventional gauze, soframycin skin ointment and chitosan treated groups, the prepared nano dressing caused an accelerated healing of open excision type wounds in albino rat model.
The synergistic effects of nanocomposite dressing material like good antibacterial ability, high swelling properties, high WVTR, excellent hydrophilic nature, biocompatibility, wound appearance and wound closure rate through in vivo test makes it a suitable candidate for wound healing applications.
© 2013 Elsevier Ltd. All rights reserved.
References: and Gu (2008) fabricated wound dressing composed of nano-Ag and chitosan to observe the healing rate of Ag-chitosan dressing. wounds (70%). Peng et al. (2008) prepared TiO2 –chitosan with collagen nanocomposite (NTCAS) for artificial skin nano-TiO2 and immune-enhancing effect of chitosan. Commercialization of these new nanoparticles based wound dressing materials (Ulkur, Oncul, Karagoz, Yeniz, & Celikoz, 2005) is sprouting almost (1954). Physiological and pathological effects of long-term polyvinylpyrrolidone retention Amiji, M. M. (1995). Permeability and blood compatibility properties of chitosan–poly(ethylene oxide) blend membranes for haemodialysis Anjali Devi, D., Smitha, B., Sridhar, S., & Aminabhavi, T. M. (2006). Novel crosslinked chitosan/poly(vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique Archana, D., Dutta, J., & Dutta, P. K. (2010). Chitosan–pectin–titanium dioxide nanocomposite film: An investigation for wound healing applications. Asian Chitin Journal, 6, 45–46. Autian, J., Kronenthal, R. L., Oser, Z., & Martin, E. (1975). Biological model systems for the testing of the toxicity of biomaterials Brammer, K. S., Oh, S., Gallagher, J. O., & Jin, S. (2008). Enhanced cellular mobility guided by TiO2 nanotube surfaces Chen, Y., Yan, L., Yuan, T., Zhang, Q., & Fan, H. (2011). Asymmetric polyurethane membrane with in situ-generated nano-TiO2 as wound dressing. Journal of Applied Polymer Science, 119, 1532–1541. Demirci, S., Alaslan, A., & Caykara, T. (2009). Preparation, characterization and surface pKa values of poly(N-vinyl-2-pyrrolidone)/chitosan blend films. Applied Surface Science, 255, 5979–5983. Dey, R. K., & Ray, A. R. (2003). Synthesis, characterization, and blood compatibility of polyamidoamines copolymers Dhimana, H. K., Ray, A. R., & Panda, A. K. (2004). Characterization and evaluation of chitosan matrix for in vitro growth of MCF-7 breast cancer cell lines 25, 5147–5154. Gulati, K., Ramakrishnan, S., Sinn, M. A., Atkins, G. J., Findlay, D. M., & Losic, D. (2012). Han, J. B., Su, H. J., & Tan, T. W. (2006). Study on sterilizing action on E. coli of nanoTiO2 –chitosan multiplex dressing material. New Chemical Materials, 34, 65–68. Hong, Y., Chirila, T. V., Vijayasekaran, S., Shen, W., Lou, X., & Dalton, P. (1998). Ian, T., Su, H., & Tan, T. (2011). The bactericidal and mildew-proof activity of a TiO2 –chitosan composite Jayakumar, R., Prabaharan, M., Kumar, S. P. T., Nair, S. V., & Tamura, H. (2011). D. Archana et al. / Carbohydrate Polymers 95 (2013) 530–539 Jayakumar, R., Selvamurugan, N., Nair, S Jia, Y., Hu, Y., Zhu, Y., Che, L., Shen, Q., Zhang, J., et al. (2011). Oligoamines conjugated chitosan derivatives: Synthesis, characterization, in vitro and in vivo biocompatibility evaluations Kanna, M., & Wongnawa, S. (2008). Mixed amorphous and nanocrystalline TiO2 powders prepared by sol–gel method: Characterization and photocatalytic study. Kean, T., Roth, S., & Thanou, M. (2005). Trimethylated chitosans as non-viral gene delivery vectors: Cytotoxicity and transfection efficiency Kim, J. H., Sim, S. J., Lee, D. H., Kim, D., Lee, Y. K., Chung, D. J., et al. (2004). Preparation and properties of PHEA/chitosan composite hydrogel. Polymer Journal, 36, 943–948. Kumar, P. T. S., Lakshmanan, V. K., Kumar, T. V. A., Ramya, C., Reshmi, P., Unnikrishnan, A. G., et al. (2012). Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation Applied Materials & Interfaces, 4, 2618–2629. Leea, Y. H., Chang, J. J., Yang, M. C., Chien, C. T., & Lai, W. F. (2012). Acceleration