Error Detection and Correction
1. Types of Errors Whenever bits flow from one point to another, they are subject to unpredictable changes because of interference. This interference can change the shape of the signal. In a single-bit error, a 0 is changed to a 1 or a 1 to a 0. The term single-bit error means that only 1 bit of a given data unit (such as a byte, character, or packet) is changed from 1 to 0 or from 0 to 1. The term burst error means that 2 or more bits in the data unit have changed from 1 to 0 or from 0 to 1. 2. Redundancy The central concept in detecting or correcting errors is redundancy. To be able to detect or correct errors, we need to send some extra bits with our data. These redundant bits are added by the sender and removed by the receiver. Their presence allows the receiver to detect or correct corrupted bits. The concept of including extra information in the transmission for error detection is a good one. But instead of repeating the entire data stream, a shorter group of bits may be appended to the end of each unit. This technique is called redundancy because the extra bits are redundant to the information: they are discarded as soon as the accuracy of the transmission has been determined. Figure 8 shows the process of using redundant bits to check the accuracy of a data unit. Once the data stream has been generated, it passes through a device that analyses it and adds on an appropriately coded redundancy check. The data unit, now enlarged by several hits, travels over the link
1
Ass.Prof.Dr. Thamer Information theory 4th class in Communications
to the receiver. The receiver puts the entire stream through a checking function. If the received hit stream passes the checking criteria, the data portion of the data unit is accepted and the redundant bits are discarded.
Fig. 8 Three types of redundancy checks are common in data communications: parity check, cyclic