Contents lists available at ScienceDirect
Carbohydrate Research journal homepage: www.elsevier.com/locate/carres
Investigation of the binding of roxatidine acetate hydrochloride with cyclomaltoheptaose (b-cyclodextrin) using IR and NMR spectroscopy
Arti Maheshwari a,⇑, Manisha Sharma a, Deepak Sharma b a b
Department of Chemistry, IET, Mangalayatan University, Beswan, Aligarh, India Department of Physics, IET, Mangalayatan University, Beswan, Aligarh, India
a r t i c l e
i n f o
a b s t r a c t
NMR chemical shift changes of the cyclomaltoheptaose (b-cyclodextrin, b-CD) cavity protons as well as roxatidine acetate hydrochloride aromatic ring protons revealed the formation of a RAH–b-CD inclusion complex. Detailed FTIR and NMR spectroscopic (1H NMR, COSY, NOESY, ROESY) studies have been done. The stoichiometry of the complex was determined to be 1:1, and the overall binding constant was also determined by Scott’s method. The NOESY spectrum confirmed the selective penetration of the aromatic ring of RAH into the b-CD cavity in comparison to that of the piperidine ring. The mode of penetration of the guest into the CD cavity and structure of the complex has been established. Ó 2011 Elsevier Ltd. All rights reserved.
Article history: Received 1 June 2011 Received in revised form 5 July 2011 Accepted 6 July 2011 Available online 18 July 2011 Keywords: Roxatidine acetate hydrochloride b-Cyclodextrin COSY NOESY ROESY
1. Introduction Cyclomaltooligosaccharides (cyclodextrins, CDs) are oligosaccharides composed of six to eight glucopyranose units bound by a-(1?4) linkages that are commonly named a-, b-, and c-CD, respectively. b-CD, in particular, has an internal cavity shaped like a truncated cone. By virtue of their shape and the hydrophobic nature of the cavity, CDS accommodate a variety of hydrophobic molecules, or parts of them, inside their cavity through noncovalent interactions to form inclusion
References: 1. Bender, M. L.; Komiyama, M. In Cyclodextrin Chemistry; Springer: New York, 1978; Vol. 31, 2. Steed, J. W.; Atwood, J. L. Supramolecular Chemistry; Wiley-VCH: Weinheim, 2000. 3. Szejtli, J. Cyclodextrin Technology; Kluwer Academic Publisher: Dordrecht, 1998. 4. Esclusa-Diaz, M. T.; Gayo-Otero, M.; Perez-Marcos, M. B.; Vila-Jato, J. L. Int. J. Pharm. 1996, 142, 183–187. 5. Obaidat, A. A.; Matalgah, S. M.; Najib, N. M. Acta Pharm. 2002, 52, 9–12. 6. Tayade, P. T.; Vavia, P. R. Indian J. Pharm. Sci. 2006, 68, 164–170. 7. Bencini, M.; Ranucci, E.; Ferruti, P.; Trotta, F.; Donalisio, E.; Cornagilia, M.; Lembo, D.; Cavalli, R. J. Controlled Release 2008, 126, 17–25. 8. Jimenez, M. C.; Miranda, M. A.; Tormos, R. Tetrahedron 1995, 51, 2953–2958. 9. Schneider, H.-J.; Hacket, F.; Rudiger, V.; Ikeda, H. Chem. Rev. 1998, 98, 1755– 1786. and references cited therein. 10. Laverde, A., Jr.; Conceicao, G.; Queiroz, S.; Fujiwara, F.; Marsaioli, A. Magn. Reson. Chem. 2002, 40, 433–442. 11. Neuhaus, D.; Williamson, M. The Nuclear Overhauser Effect in Structural and Conformational Analysis; VCH Publishers: New York, 1989. 12. Schulze, F. R.; Buscauer, A.; Schunack, W. Eur. J. Pharm. Sci. 1998, 6, 177–186. 13. Collin, J. D.; Pidgen, A. W. Drugs 1998, 35, 41. 14. Ali, S. M.; Maheshwari, A.; Asmat, F. Pharmazie 2004, 59, 653–655. 15. Ali, S. M.; Maheshwari, A.; Fozdar, B. I. Magn. Reson. Chem. 2007, 45, 253–256. 16. Ali, S. M.; Maheshwari, A. Bull. Korean Chem. Soc. 2005, 26, 2061–2064. 17. Ali, S. M.; Asmat, F.; Maheshwai, A. IL Farmaco 2004, 59, 835–838. 18. Scott, R. L. Recl. Trav. Chim. Pays-Bas 1956, 75, 787–789.