AIM
The aim of this lab is to model bioaccumulation and biomagnification through a food chain.
MATERIALS
100 M&M’s
Paper towel to lay M&M’s on
20 small cups labelled “zooplankton”
5 medium cups labelled “minnow”
2 larger cups - one labelled “eel #1”, and another labelled “eel #2”
1 bowl labelled “osprey”
PROCEDURE
The pile of M&M’s represents the phytoplankton population in a lake. The printed “M” on the candy represents the amount of DDT (in ppm) the algae ingested from pesticide runoff from a nearby agricultural area. There are 100 M&M’s in the pile. Each circle below represents on phytoplankton. Mark the amount of toxin each phytoplankton has ingested. If there is a full “M” stamped on the candy then that phytoplankton has ingested 1 ppm of DDT, so write “1” in one of the circles below. If there is no “M” on the candy then that phytoplankton did not ingest any DDT so write a “O” in one of the circles below. If there is a partial “M” on the candy then estimate how much of the “M” there is. For example, if there is only on hump of the “M” then that would equal ½ a unit of DDT ingested by that phytoplankton so you would fill in one of the circles below with ½.
Zooplankton in the lake (population size 20) each eat 5 algae. Move 5 M&M’s into each of the zooplankton cups. Record the amount of DDT each zooplankton has ingested using the instructions from step 1. Write these amounts onto the individual copepod pictures below.
Minnows (population size 5) in the lake each eat 4 zooplankton, ingesting energy and the toxin that is stored in the zooplankton as well. Move the correct number of M&M’s from the zooplankton cups into the minnows cups. Record the amount of DDT ingested by each of the small fish onto the fish below using the instructions from step 1 to calculate the total amount of each fish.
Two eels then come along for dinner. One eels eats 2 minnows and the other eel eats 3 minnows. Move the correct number of